The Water and Wastewater Lab's COVID-19 Update

Waterborne Infectious Disease Outbreak Control (WIDOC) subcommittee
Disinfection and Public Health Committee
What the water lab needs to know

- Background
- COVID-19 virus nomenclature
- Multiple shedding routes
- Detected by molecular methods or cell culture
- Its RNA has been found in body secretions, wastewater and surface water
- Many unknowns remain
Why do we think wastewater treatment is effective?

Inactivation requirements
Treatment plants were designed using QMRA and process performance data with non-enveloped enteric viruses, which are more or equally resistant to disinfection than coronaviruses (Wigginton and Boehm, 2020).

Conventional treatments
Conventional oxidation (e.g., hypochlorite, PAA) and UV irradiation should be effective at inactivating coronaviruses (CDC, 2020). Large single stranded RNA makes coronavirus very susceptible to UVC (Wigginton and Boehm, 2020).

PROCESS DESIGN

COLLECTION SYSTEMS
Survival of infective virus unknown
COVID-19 virus RNA is present in feces but it remains unclear whether infective virus is present. WEF, CDC and WHO believe that wastewater is not a significant route of transmission.

MULTI-BARRIER APPROACH
Primary and Secondary
Every stage of treatment, retention or dilution controls additional microorganisms (Sano et al., 2016)

DISINFECTION

MONITORING
Traditional Parameters
Monitoring parameters like E. coli, UVT and total free chlorine are predictive of process efficacy (Wang et al., 2005; Gundy et al., 2009; Bibby et al. 2017).
Risk to our laboratory staff
Hazard assessment
How much COVID-19 virus is present and infective?

Exposure assessment
How much contact with infective COVID-19 virus would the worker have (frequency, route, duration of exposure)?

Mitigating risk
- Safe work plans, SOPs and hazard assessments for routine and non-routine tasks
- PPE use and maintenance
- Cleaning your space
- Standard hygiene practices as per CDC/OSHA

Highest potential of virus survival:
- Collection system samples (drainage or By-law samples)
- Stormwater or CSO samples
- Raw (or primary influent) samples

Highest risk activities:
Potential of splash (known effect)
- Sample homogenization or blending
- Subsampling
- Microscopy (wet mounts)

Potential of bioaerosols (unknown effect)
- Vacuum filtration
- Vortexing without caps

Potential of fomite contact
- Sample receiving
- Lab benches, surfaces, chairs, keyboards
- Shared instruments
- Lab coats and PPE
How to Stay COVID-19 Free at the WRFF

- **SEWAGE IS FILTHY**
 - Good hygiene and PPE protect workers from most infections

- **WASH YOUR HANDS WELL**
 - With soap and water for 20 seconds or sanitizer with at least 60% alcohol

- **DO NOT TOUCH YOUR FACE**
 - Do not touch eyes, mouth, nose or cuts when handling sewage

- **WEAR PROPER PPE**
 - Make sure you wear waterproof gloves and rubber boots

- **CLEAN DIRTY SURFACES**
 - Clean frequently touched surfaces with 70% ethanol or 0.5% chlorine

- **HAZARD ASSESSMENTS**
 - Consider biological hazards before performing a task

- **REMOVE DIRTY CLOTHES**
 - Soiled clothes should be removed before eating or leaving work

- **EAT IN CLEAN AREAS**
 - Eat, smoke or chew gum in designated clean areas

- **COVER SORES AND CUTS**
 - Use clean, dry bandages to cover cuts, wounds and sores

- **WASH HANDS**
 - After handling sewage, before eating, before and after toilet use

- **FLUSH EYES WITH WATER**
 - If sewage splashes in your eyes, flush with clean water

- **LAUNDER WITH CHLORINE**
 - Launder work clothes at the end of the day with 0.05% chlorine