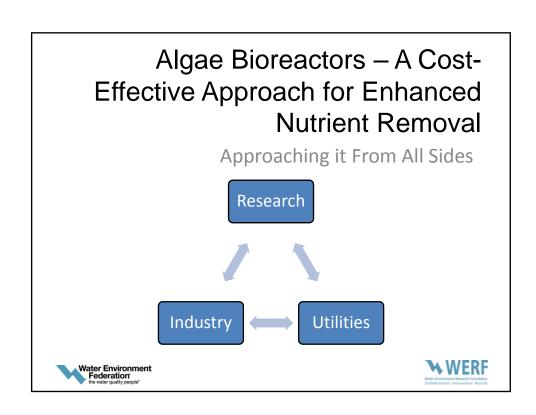
Algae Bioreactors as a Cost-Effective Approach for Enhanced Nutrient Removal – Approaching it From All Sides

Tuesday, April 29th, 2014 1:00 – 3:00 pm Eastern

How to Participate Today

- Audio Modes
 - Listen using Mic & Speakers
 - Or, select "Use Telephone" and dial the conference (please remember long distance phone charges apply).
- Submit your questions using the Questions pane.
- A recording will be available for replay shortly after this webcast.


Today's Moderator

Amit Pramanik, PhD, BCEEM Senior Program Director, WERF

Algae Bioreactors – Approaching it from all sides

- Part I: The research side Enhanced nutrient removal using encapsulated algae in a waste stream, Dr. Katherine C. Filippino and Dr. Margaret R. Mulholland (Old Dominion University)
- Part II: The engineering side Algal nutrient removal vs conventional denitrification processes, an evaluation matrix, Dr. Christopher Wilson (Greeley and Hansen)
- Part III: The utility side In-plant benefits of algal nutrient removal, *Dr. Charles Bott (Hampton Roads Sanitation District, VA)*

Part I: The research side

Background and Introduction

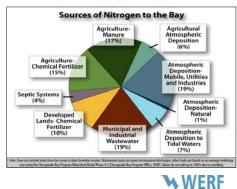
Dr. Margaret R. Mulholland, Old Dominion University

Part I: The research side Turning a problem into an opportunity

Chesapeake Bay watershed getting 'pollution diet', EPA set total maximum daily loads (TMDLs)

 States creating Watershed Implementation Plans (WIP) to comply

 Sectors targeted: wastewater resource recovery facilities (WRRFs), agriculture, forest, urban/suburban stormwater runoff, on-site systems (septic), and air



WERF.

Map courtesy UMCES/EcoCheck

Turning a problem into an opportunity

- Point sources like WRRFs are easier to target for nutrient reductions compared to non-point sources (urban, suburban, agricultural run-off)
- WRRFs are regulated point sources with discharge permits already in place

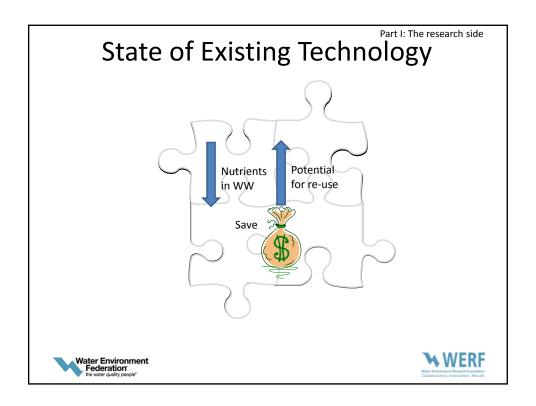
Turning a problem into an opportunity

- Eutrophication of water ways leads to unbalanced algal growth
- Algae need nitrogen and phosphorus to grow

106
$$CO_2$$
 +16 HNO_3 + H_3PO_4 +78 H_2O $C_{106}H_{175}O_{42}N_{16}P$ + 150 O_2

 Rather than bringing the nutrients to the algae, bring the algae to the nutrients

Part I: The research side


State of Existing Technology & Current Research

Dr. Katherine C. Filippino, *Old Dominion University*

State of Existing Technology

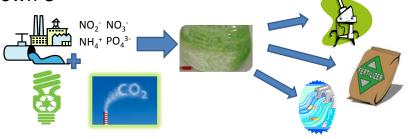
 Aquaculture, agriculture, livestock, and small community wastewater facilities have used algal nutrient removal

Existing technologies:

- Algal ponds
 - Advanced Integrated Wastewal Pond Systems (AIWPS) = Settlin ponds + High rate algal ponds (HRAPs)
 - AIWPS + Rotating biological contactors (RBCs)
 - Focus on removal of ammonium (NH₄+)
 - Require space and sunlight

State of Existing Technology

- Biofuels sector significant advancements in bioreactor development, no strict focus on nutrient removal
 - Photo-bioreactors open or closed
- Immobilization techniques developed for variety of purposes
 - Alginate, carrageenan, PVA gels
 - Beads, screens, biofilms



Part I: The research side

State of Existing Technology

 Algae grow fast, use N in high quantities, use many forms of dissolved N and P, and make their own C

 Municipal wastewater treatment - potential for enhancing or replacing traditional bacterial post-denitrification processes

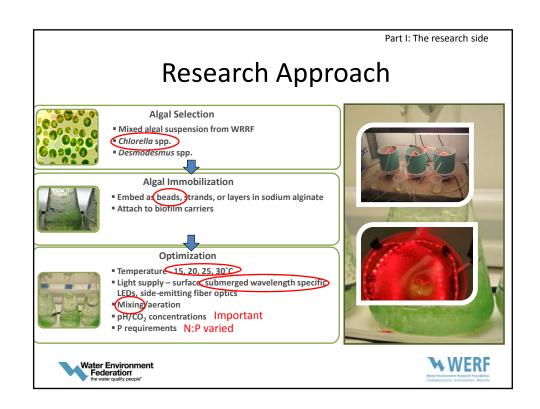
Phycoremediation - Challenges

- WRRF footprint
 - Existing WRRF reactors are large and deep = light limitation for algal growth
- Natural temperature and pH fluctuations in WRRFs
- Prevent "wash out" of algal biomass Growth > HRT
- Separation and/or harvesting of algae and treated
 WW

Part I: The research side

Research Solutions

- Identify algae fast growing, high rates of N and P removal
- Immobilize algae to facilitate separation
 - Natural polymers sodium alginate
 - Apply as a biofilm
- Optimize light availability
 - Surface vs submerged

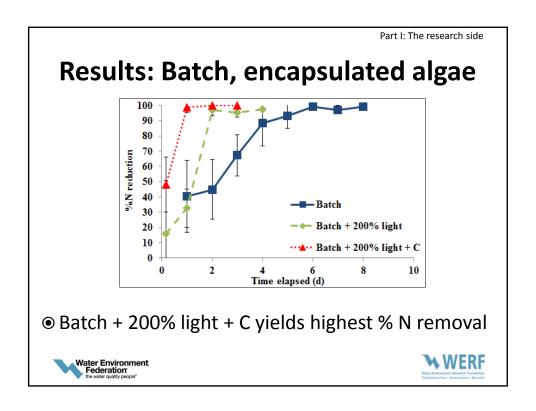


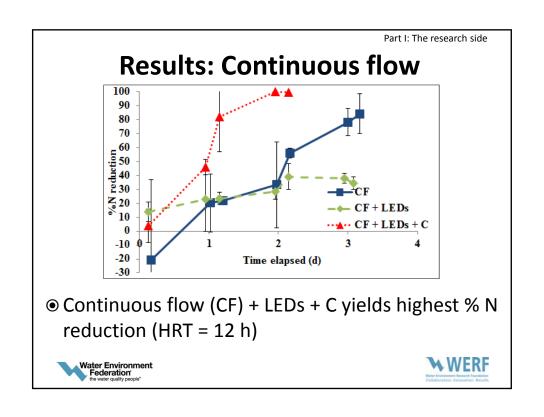
Research Solutions

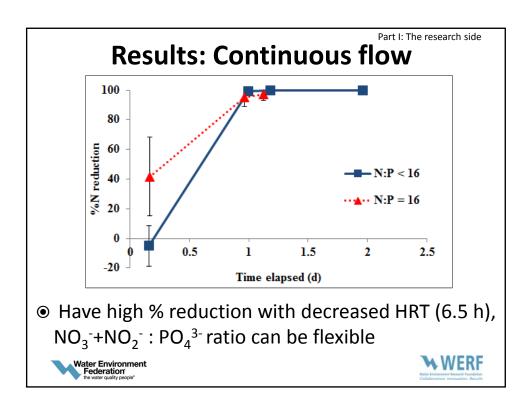
- Monitor pH
 - Introduce inorganic C source to ensure no C limitation
 - Could come from in-plant source
- Monitor temperature
- Monitor N:P ratios
 - Algae grow best when N:P ≈ 16, is this flexible?
 - Could help relax upstream P reductions
- Grow under continuous flow conditions

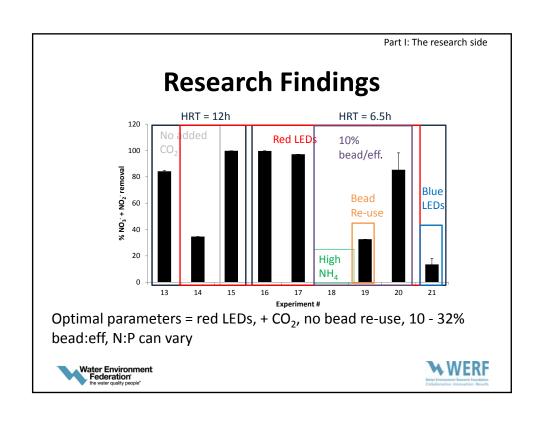
Parameters Measured

- Doubling time
 - Growth of algae via fluorescence, exponential fit
 - DT (d) = $ln(2) / gr(d^{-1})$
- Nutrient removal efficiency
 - Nutrients measured on Astoria Pacific AA
 - Removal efficiency calculated as % based on the rate of decrease over time
- pH monitored using meter
 - CO₂ bubbled in automatically to maintain pH between 7 and 7.5


Part I: The research side


Preliminary Results


- First experiments focused on growth of algae on effluent in 'batch' mode (no flow)
- Followed by encapsulating algae in sodium alginate beads
 - Doubling times ~ 2 4 d, N removal measured in days
- Continuous flow experiments modulated HRT, light, CO₂, N:P, bead:effluent



Research Findings

- Chlorella is versatile
 - Grows fast at a range of temperatures (15-30°C)
 - Grows on all forms of N, N:P must be evaluated, but always had growth with large range of N:P (2 – 100)
- Successful N removal (100%) at HRTs of 6.5 12 h
- Improve N removal by adding wavelength specific submersible LEDs

Part I: The research side

Research Findings

- \odot Controlling pH important, optimal range = 7 7.5
 - Prevent CO₂ limitation of algal growth
 - Could be a good use of plant CO₂
- Scale-up designs must consider all variables for successful N removal
- Pilot-scale is the next stop, must take into consideration the engineering side...

Part II: The engineering side

Engineering Evaluation

Dr. Chris Wilson, Greeley and Hansen

Part II: The engineering side

The purpose of a comparative evaluation matrix for innovative technologies

- How does a utility justify investigating a high potential innovative technology that may pose higher perceived risk than a well-proven one?
- We a strategy to comparatively assess technologies at various levels of development based on inherent strengths and weaknesses
 - Technologies have similar purposes in WRRF
 - Need to acknowledge:
 - Potential of Innovative technologies relative to status quo
 - · Risk of innovative technologies relative to status quo
- Focus on communication rather than decision making

Part II: The engineering side Development of the comparative evaluation matrix – Multi-attribute Utility Analysis Technologies analyzed on 4 key bases: - Technical Basis - Operational Basis - Financial Performance Sustainability

Part II: The engineering side Technical basis criteria assess technology performance

₩ WERF

risks and implementation

Technical basis categories:

Water Environment Federation the water quality people*

- Physical process issues
- Scientific validation
- Technological maturity
- > Technological verification
- > Project team requirements
- Performance

Part II: The engineering side

Operational basis criteria assess suitability to WRRF environment

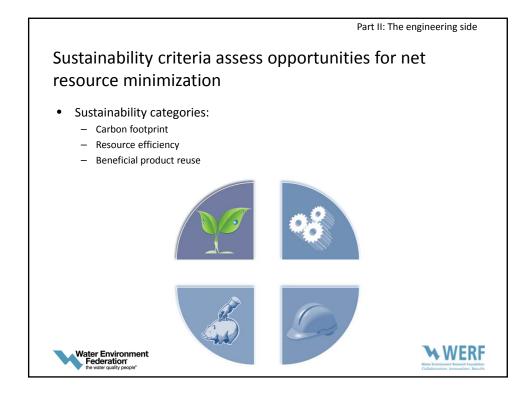
- Operational basis categories:
 - Compatibility with wastewater
 - Process control requirements
 - Maintenance requirements
- > Labor specialization requirements
- > Health and safety considerations

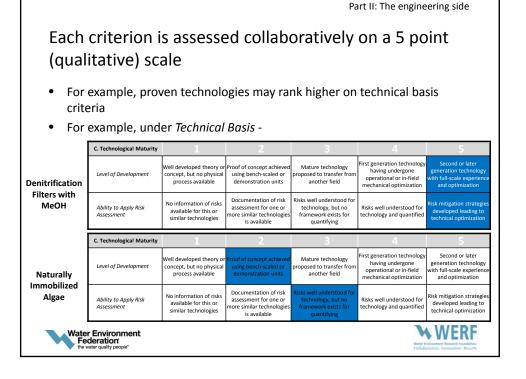
Part II: The engineering side

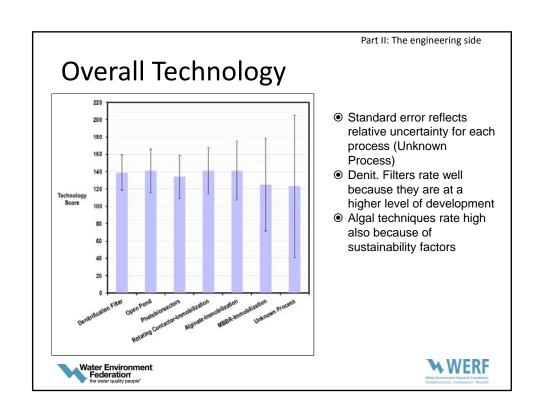
Financial performance criteria assess life-cycle cost factors

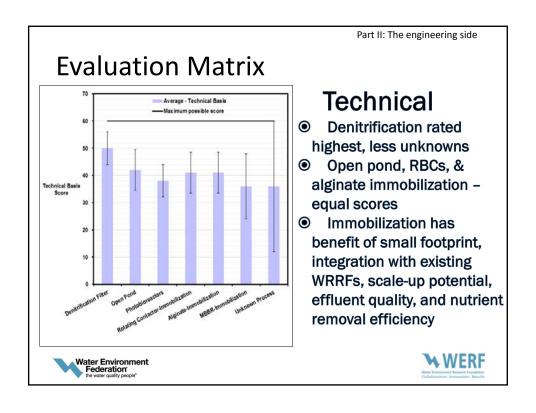
- Financial basis categories:
 - Operating cost elements
 - Capital cost elements
 - Cost risk factors

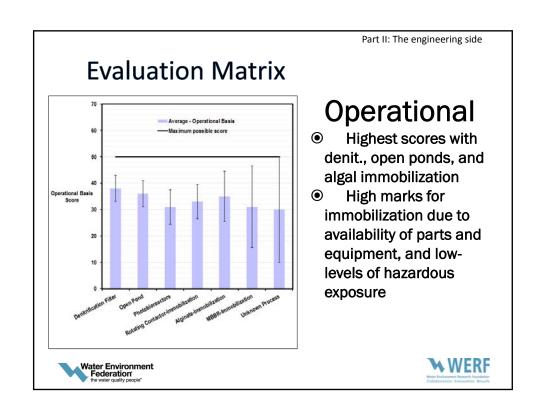
- > Development cost mitigation
- > Cost recovery opportunities

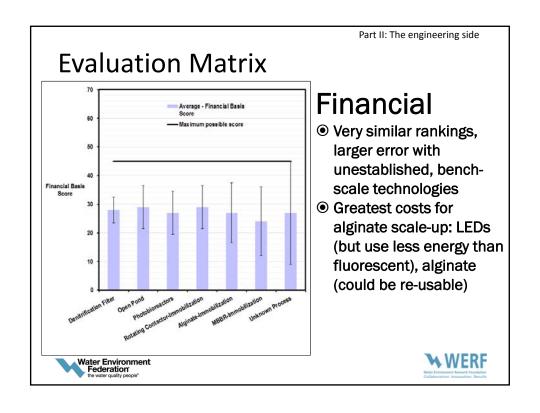


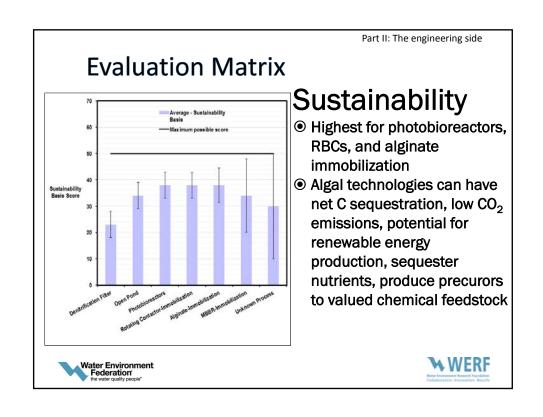











Part II: The engineering side Each criterion is assessed collaboratively on a 5 point (qualitative) scale For example, novel technologies may rank higher on sustainability criteria For example, under Sustainability -C. Beneficial Product Reuse equesters nutrients in form that is directly usable as a nutirent source such as feed or Denitrification in a benign form fertilizer Filters with oduces precursors to valued chemcial oduces byproducts tha Produces valued chemical MeOH Produces valued Generation of High Value Chemical Feedstocks ave limited market valuer potential for beneficia feedstocks that require cleanup and separation eedstocks that require emical feedstocks that additional conversion are directly usable prior to use use out of the WWTP C. Beneficial Product Reus Sequesters a fraction of nutrients into a eneficially reusable for while releasing a fraction Converts nutrients to a form and releases them way that is detrimenta to the environment Converts nutrients to a benign form that is released to the environment Nutrient Recycling Naturally in a benign form **Immobilized** Produces valued chemical feedstocks that require cleanup and separation prior to use roduces byproducts that Algae Produces no beneficial Produces valued Generation of High Value have limited market valu Chemical Feedstocks or potential for beneficia recovered are directly usable use out of the WWTP WERF Water Environment Federation

Part II: The engineering side

Evaluation Matrix: Conclusions

- Denitrification filter rates highest
 - > The most established technology
- Algal technologies rate high
 - ➤ Because of their sustainability
 - C emissions, energy consumption, potential for renewable energy production, and opportunity to reuse and recycle algal biomass
 - ➤ Need piloting and development at larger scales of operation

Part II: The engineering side

Scale-up requires targeted research where risks or outstanding questions exist

Expansion to pilot scale technology at full-scale WRRF

Parameter	Target	Requirements	Monitoring	Costs	Benefits
HRT	Algal growth rate ≥ HRT at 100% nutrient removal	Continuous flow system	Flow rate, biomass in waste stream (washout), nutrient concentrations	Maintenance	Flexibility
рН	pH = 7 – 7.5	CO ₂ , or other inorganic C source	pH, algal growth, nutrients	Gas transfer issues	C consumption and in- plant C recycling
N:P	N:P = 16	Additional P (if necessary)	N and P concentrations relative to algal growth	Adding P	Relax upstream P removal if applicable
Light	Algal growth rate ≥ HRT at 100% nutrient removal	Submersible LEDs	Algal growth rates, nutrients	Start-up costs for lights, maintenance	Use of large, deep tanks, minimum energy requirement
Algae separation	No algae present in final effluent	Screens/separation technology	Biomass in waste stream	Maintenance	Nutrient recovery
Drying techniques	Dried biomass	Heat and/or ambient temperatures	Dried biomass	Energy demand necessary for drying	Final product valuable for nutrient recovery

Part III: The utility side

Utility Perspective

Dr. Charles Bott, Hampton Roads Sanitation District, VA

Part III: The utility side

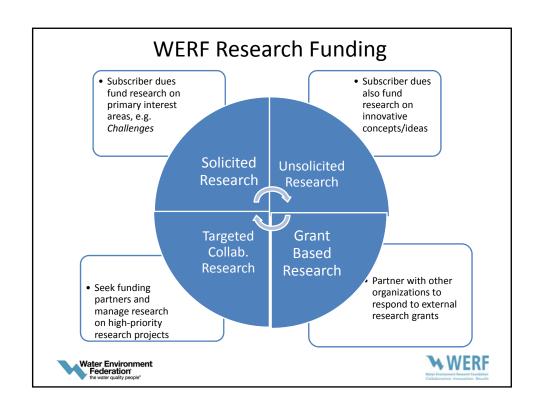
Utility Perspective

- Most algae research has considered:
 - Large scale algae culture
 - Biofuel production
 - Ponds, Raceways, photo-bioreactors
 - Lots of land...
- Must also consider:
 - Urban setting no change in WRRF footprint
 - Permit compliance reliability
 - Good process engineering treatment is the first priority

Part III: The utility side

Considerations...

- > Possible use for polishing
- > Relax P removal upstream
- ➤ Re-route CO₂ emissions
 - ➤ Incinerator
 - > power plant
 - upstream bacterial process
- ➤ Provide appropriate light source...
- Reactor must be reasonable in size...
- ➤ O&M costs must be competitive with conventional post-denitrification process


Part III: The utility side

Pilot Testing...

- Size = 50 200 gal
- HRT < 6 hrs
- Traditional bioreactor designs
- Consider alginate beads and algae growing as biofilm
- Evaluate harvesting, drying, and nutrient recovery options
- Investigate light scale-up

Questions?

Acknowledgements: Mulholland laboratory, WERF, WEF, HRSD, Greeley-Hansen, Chris Schweitzer, Shalni Kumar

How to Participate Today

- Audio Modes
 - Listen using Mic & Speakers
 - Or, select "Use Telephone" and dial the conference (please remember long distance phone charges apply).
- Submit your questions using the Questions pane.
- A recording will be available for replay shortly after this webcast.

