

How to Participate Today ____× Audio Audio Modes Audio Mode: OUse Telephone • Listen using Mic & Use Mic & Speakers **Speakers** 4) 000000000 <u>●</u> MUTED • Or, select "Use Telephone" and dial the conference (please remember long Questions 5 distance phone charges Questions Log apply). Submit your questions using the Questions pane. [Enter a question for staff] A recording will be available for replay shortly after this webcast. Webinar Now Webinar ID: 429-384-699 **GoTo**Webinar™ **EVOQUA**

_

Your Presenters Today Are:

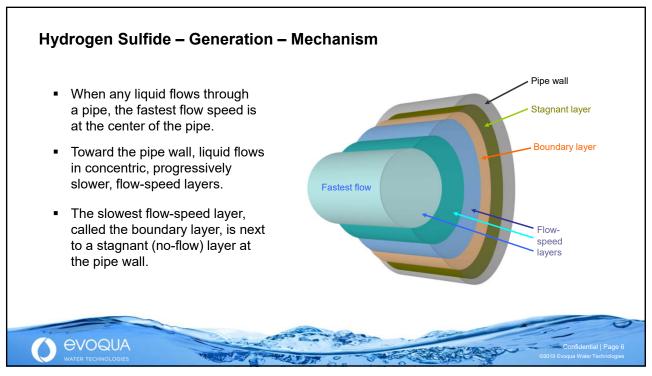
Calvin Horst, Product Manager, Odor Control

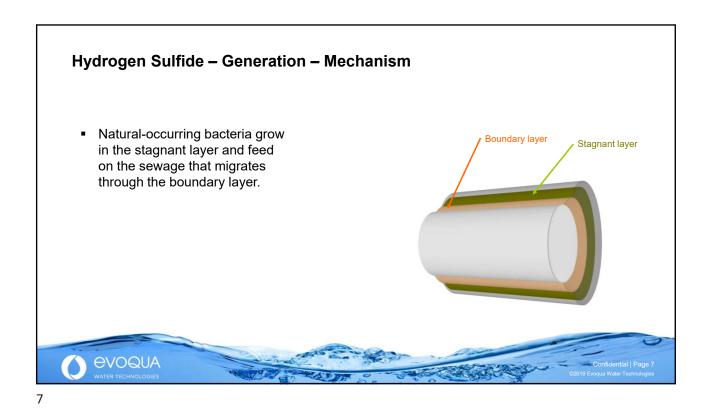
• Justin Stewart, Application Engineer, Odor Control

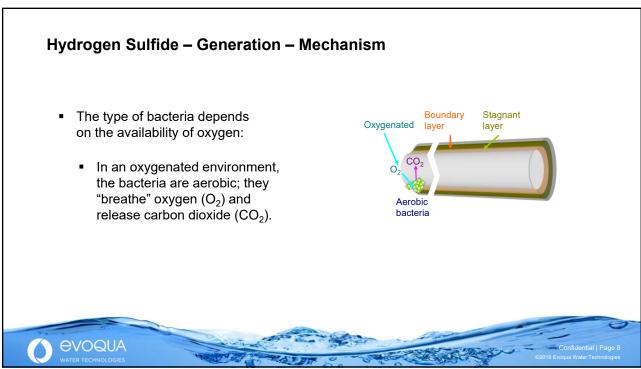
3

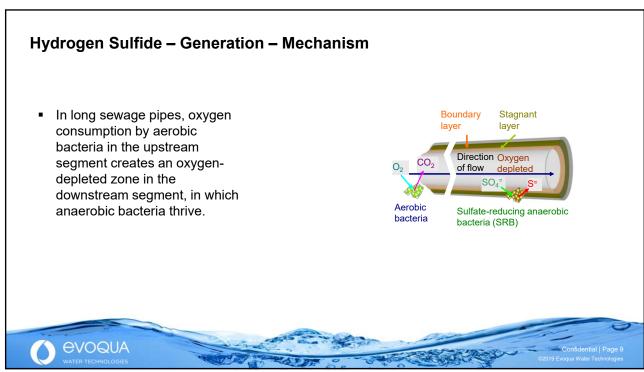
pH Shift Odor Control - Outline

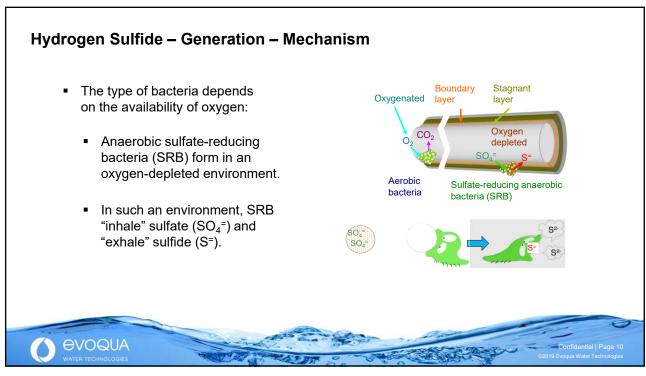
- Wastewater Odors
 - What are they and where do they come from
- pH Shift Odor Control
 - Methodology
 - Products Characteristics / Pros / Cons
- Case Study
 - Method
 - Results



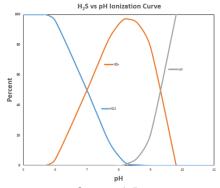





Confidential | Page 4


Substance	Formula	Characteristic Odor	Odor Threshold (ppm)	
Allyl Mercaptan	CH ₂ =CH-CH ₂ -SH	Strong garlic-coffee	0.00005	
Amyl Mercaptan	CH ₃ -(CH ₂) ₃ -CH ₂ -SH	Unpleasant-putrid	0.0003	
Benzyl Mercaptan	C ₆ H ₅ CH ₂ -SH	Unpleasant-strong	0.0002	
Crotyl Mercaptan	CH ₃ -CH=CH-CH ₂ -SH	Skunk-like	0.00003	
Dimethyl Sulfide	CH ₃ -S-CH ₃	Decayed vegetables	0.0001	
Ethyl Mercaptan	CH ₃ CH ₂ -SH	Decayed cabbage	0.0002	
Hydrogen Sulfide	H ₂ S	Rotten Eggs	0.0005	
Methyl Mercaptan	CH₃ <mark>S</mark> H	Decayed cabbage	0.0011	
Propyl Mercaptan	CH ₃ -CH ₂ -CH ₂ -SH	Unpleasant	0.000075	
Sulfur Dioxide	SO ₂	Pungent, irritating	0.009	
Tert-Butyl Mercaptan	(CH ₃) ₃ C-SH	Skunk, unpleasant	0.00008	
Thiocresol	CH ₃ -C ₆ H ₄ -SH	Skunk, rancid	0.00006	
Thiophenol	C ₆ H ₅ SH	Putrid, garlic like	0.00006	
Amines	CH ₃ NH ₂ , (CH ₃) ₃ N	Fishy	0.035, 0.000032	
Ammonia	NH ₃	Ammoniacal	1.5	
Diamines (cadaverine)	$NH_2(CH_2)_nNH_2$	Decayed Flesh	-	
Skatole	C ₈ H ₅ NHCH ₃	Fecal	0.0000056	

Sulfide – pH Ionization relationship


Sulfide in solution exists in 1 of 3 forms:

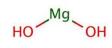
- Dissolved hydrogen sulfide gas (H₂S)
- Bisulfide (HS-)
- Sulfide (S=)

Of these 3 H2S is volatile and can be liberated through turbulence.

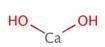
The prevailing form depends on pH.

As pH increases, H_2S shifts to one of the two non-volatile ionic forms.

- S=: non-volatile
- HS-: non-volatile
- H₂S: volatile, can off-gas to cause corrosion and odors.



11


PH SHIFT PRODUCT OPTIONS

Characteristics

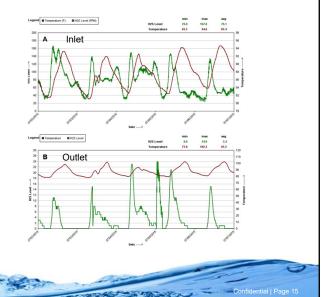
- Solubility 109 g/L
- · Does not self buffer
- Does not contribute to the formation of Struvite
- · Highly Corrosive
- · High/Serious Health Hazard

Characteristics

- Non-Hazardous
- Self Buffering
- Self Buffering to 8.5
- Slurry can accumulate if overfed
- · Difficult to monitor for overfeed
- Contributes to the formation of Struvite

Characteristics

- Wide pH range\controllable
- Dissolves rapidly
- Doesn't form Struvite
- Slurry can accumulate if overfed
- Can cause scaling if overfed


Case Study – Wastewater Treatment Plant – Southern Florida

Octionalia | Page 14

Octio

Case Study – Scrubber Performance

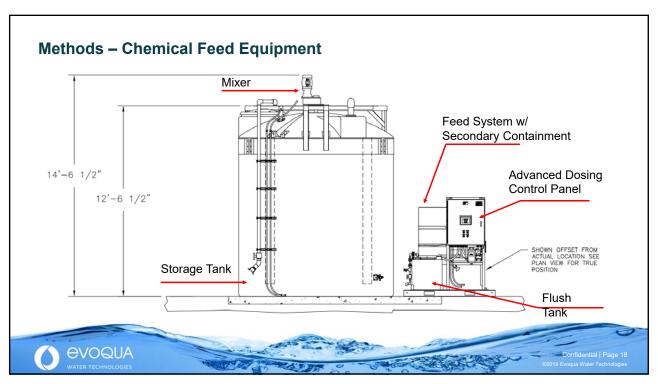
- This WWTP is located in a high profile tourist district.
- Complaints were received regarding "rotten egg" odors around the plant.
- Headworks covers and EQ tank was confirmed to be airtight. Scrubber was air-balanced.
- Odor complaints persisted. Scrubber was unable to completely remove H₂S.

15

Case Study - Wastewater Treatment Plant - Southern Florida

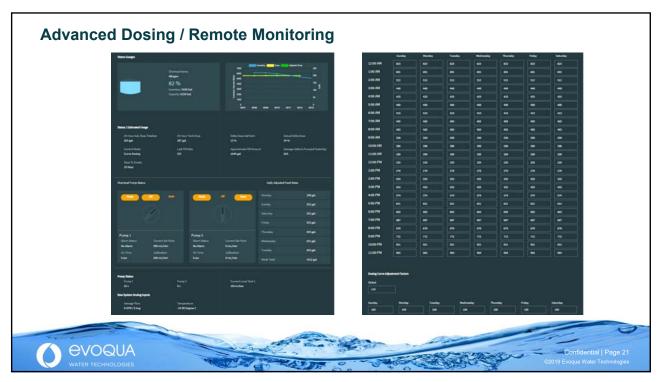
- Plant scheduled to be decommissioned and converted to a Master Pump Station by 2018.
- Needed a temporary solution for controlling H₂S odors from the scrubber effluent.
- Solution should be:
 - Not cost prohibitive or capital intensive
 - Mobilized quickly / provide immediate results
- Liquid phase odor control via. temporary feed system deemed most economical solution.

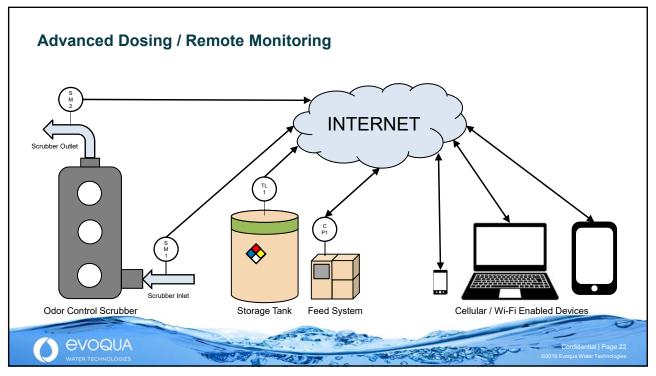
Confidential | Page 16 2019 Evoqua Water Technologies

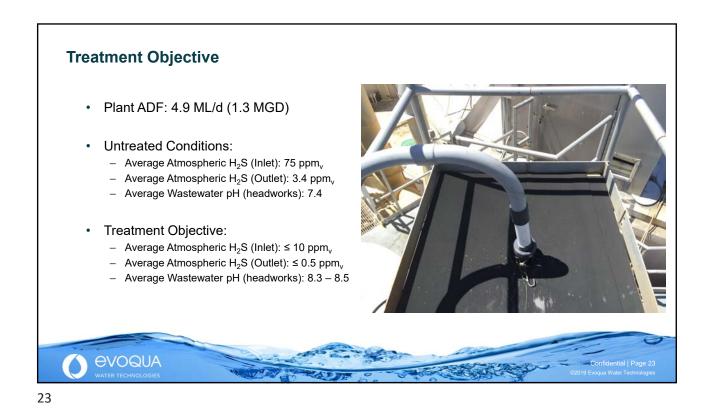

Methods – Technology Evaluation

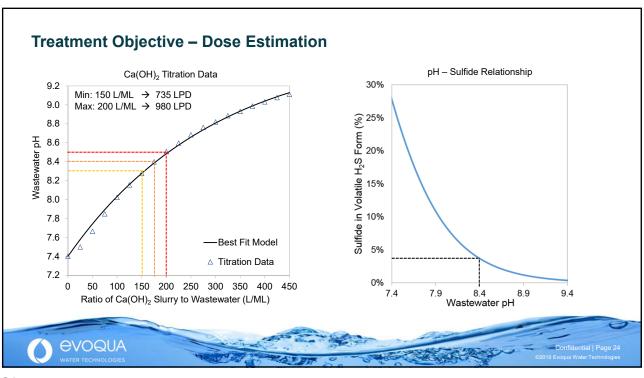

- · Design Considerations / Limitations:
 - · Upstream lift stations lack physical space for installation of chemical feed systems.
 - · Upstream lift stations are located in sensitive tourist or residential areas.
 - Feed system must be able to control odors by feeding chemical at the WWTP.
 - Chemical safety is a concern / non hazardous chemicals preferred.

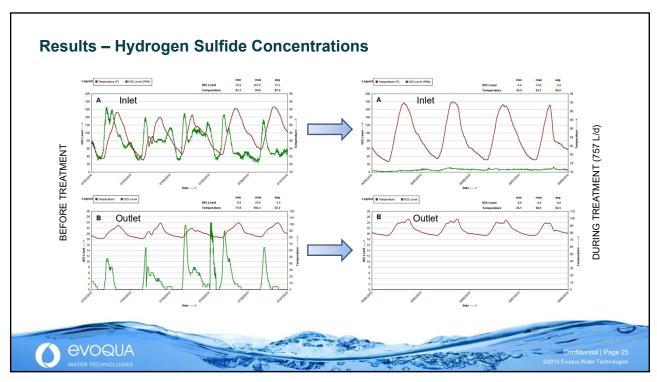
Upstream Lift Station	Flow (ML/d)	Length (m)	Size (cm)	Avg. RT (hrs)
Lift Station #1	0.999	604.4	15.2	0.3
Lift Station #2	0.625	430.7	15.2	0.3
Lift Station #3	1.110	976.6	20.3	0.7
Lift Station #4	0.814	958.6	15.2	0.5
Lift Station #5	0.625	430.7	15.2	0.3
Lift Station #6	0.386	1003.1	15.2	1.1
Average				0.5

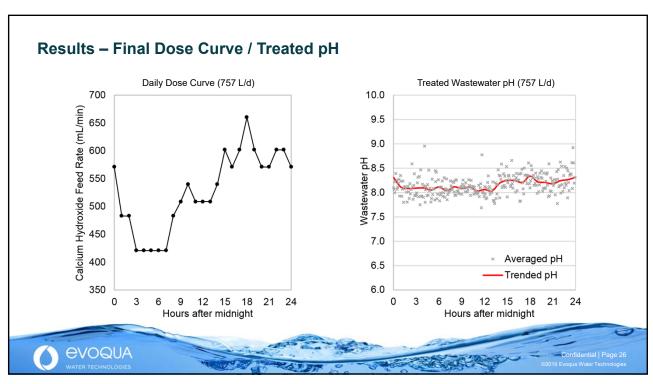

- Nitrate Salts: Calcium Nitrate Solution
 - 1.5 hour RT for complete removal
 - Requires feed system upstream in collection system
- Iron Salts: Ferric / Ferrous Sulfate Solutions
 - ~ 5 minutes RT for complete reaction
 - Chemical safety is a concern
- Oxidizers: Hydrogen Peroxide Solution
 - ~ 30 minutes RT for complete removal
 - · Chemical safety is a concern
- pH Shift: Calcium / Magnesium Hydroxide
 - Ca(OH)₂ dissolves rapidly
 - Mg(OH), requires > 30 minutes to completely dissolve

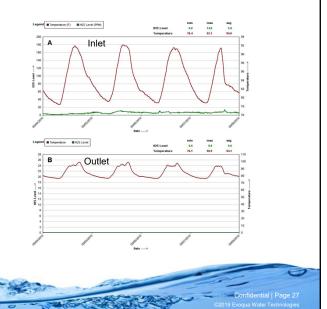







Dose Curve vs. Two Pump Two Timer 2P2T Dose Settings Two Pump Two Timer (2P2T) systems attempt to satisfy changing chemical demand by using three set feed rates: 1200 1000 Pump 2 Only Pump 1 OnOnly Pump 2 On (ON) - Both Pump 1 and Pump 2 On Many parts of the day are either overfed or underfed. 400 200 Requires overshooting feed rates in order to achieve 100% sulfide control. Time of Day (hour) "Best Fit" 2P2T settings to meet the daily Chemical demand Pump 1 (ON) **evoqua**





Results - Summary

- Plant ADF: 4.9 ML/d (1.3 MGD)
- Treatment Objective:
 - Predicted Daily Feed Rate: 735 980 L/d (195 260 GPD)
 - Average Atmospheric H₂S (Inlet): ≤ 10 ppm_v
 - Average Atmospheric H₂S (Outlet): ≤ 0.5 ppm_v
 - Average Wastewater pH (headworks): 8.3 8.5
- · Results:
 - Actual Daily Feed Rate: 757 L/d (200 GPD)
 - Average Atmospheric H₂S (Inlet): 5.8 ppm_v
 - Average Atmospheric H₂S (Outlet): 0 ppm_v
 - Average Wastewater pH (headworks): 8.2

27

Discussion / Conclusions

- By using a Calcium Hydroxide slurry, the Southern Florida WWTP was able to reduce H₂S loadings.
- H₂S levels were reduced such that the plants aging scrubber was able to handle any residual odors.
- Calcium Hydroxide slurry could be applied directly into WWTP influent flow at the plant headworks.
- Rapid dissolution of Calcium Hydroxide allowed for an instantaneous reduction of odors.

- Average pH was elevated from 7.4 to approximately 8.2 by feeding 757 L/d (200 GPD)
- Final optimized feed rates were actually less than what was originally predicted from initial titration / model data.
- Following this successful demonstration, the customer continued to treat the WWTP using Calcium Hydroxide.

Header (Arial 24)

Text: Arial 18 or smaller, depending on amount of content.

Do not cover the footer or logo and wave with text.

Callouts: Arial 20 (if possible), bold, italicized; white font on blue background. Callout box should be no wider than text box on the page.

