

Introduction

Approximately 60+% of wastewater produced by the Pulp and Paper industry is treated using large basins (Aerated Stabilization Basin, ASB). Wastewater from primary clarifier effluent typically enters the secondary treatment basin from a single or multi feed configuration. Surface aerators are typically utilized for aeration and mixing purposes in the basin. Carbon and nitrogen removal occur in the basin as a result of heterotrophic and autotrophic biological reactions in the presence of oxygen. Since biological reactions are directly impacted by temperature, prediction of the rate of change of temperature as a result of heat transfer mechanisms that affect the basin wastewater temperature become important. Due to having larger detention time and surfaces areas compared to activated sludge tanks, aeration ponds are more prone to being affected by heat transfer through the wastewater/air interface. In general, biological reactions taking place in the pond generate heat. Depending on the temperature model, other components of heat transfer can be taken into account.

This factsheet is the result of extensive review of temperature models in the literature. The challenge with compiling information from existing resources is the confusion due to inconsistencies in nomenclature and units. As a result, efforts were made to resolve these issues by providing a summary of two of the most common temperature models with unified nomenclature and units.

The overall heat balance equation is shown below (Equation 1). For dynamic simulation, a numerical integration technique can be used to simulate the rate of change of temperature as a result of varying inputs. When input variables are constant, steady-state solution is reached and the right-hand side of Equation 1 becomes zero.

$$\Sigma H + \rho_{w} c_{pw} \left[\sum_{i=1}^{n} \left(Q_{inf,i} T_{inf,i} - Q_{eff} T_{w} \right) \right] = V \rho_{w} c_{pw} \frac{dT_{w}}{dt}$$
(1)

Energy balance components for the simple and complete models are illustrated schematically in Table 1 (pg. 2). As can be easily seen, the number of inputs required for the complete model is significant.

Simple Temperature Model

In this model (Gillot and Vanrolleghem 2003, van der Graaf 1976, Hydromantis 2015), four heat transfer parameters are considered. The parameter nomenclature is consistent with the complete model presented next. The strength of the simple model is that it requires very little input data and can be used in most applications with reasonable accuracy as it focuses on the most significant heat transfer mechanisms and neglects others.

Term	Equation	
Hp	sŋNP _{ae}	(4)
H _b	$-(H_{ou}r_{0,bio.} + H_{denit}r_{denit} + H_{nit.}r_{nit.})$	
H _{wg}	$U_{\rm wg}A_{\rm wg}(T_{\rm w}-T_{\rm g})$	(6)
Hi	$\label{eq:surface} \texttt{Surface} \ \texttt{aeration: 11.4NP}_{\texttt{aer}}\texttt{A}_{b}(\texttt{T}_{a}\text{-}\texttt{T}_{w}) \texttt{Diffused} \ \texttt{aeration: 25A}_{b}(\texttt{T}_{a}\text{-}\texttt{T}_{w})$	(7)

Table 2: Simple Temperature and Model Equations

Copyright © 2018 Water Environment Federation. All Rights Reserved. WSEC-2018-FS-013 Pulp and Paper Temperature Modeling

Table 1: Energy Balance Components for the Simple and Complete Temperature Models

Complete Temperature Model

Additional heat transfer terms included in the complete temperature model are solar radiation, atmospheric radiation, and evaporation. The aeration model is an extension of the simple model equation. The advantage of the complete model is that it includes parameters for all heat transfer mechanisms. The downside is that more input information must be either known or assumed. In most cases, assumed values include higher potential error.

Comparison of Simple and Complete Models

The simple and complete temperature models were used in a recent project aimed at minimizing heat loss in an activated sludge wastewater treatment system in a cold climate. In this case, the complete temperature model produced reasonable results compared to actual field temperature measurements while simple model predicted significantly lower than observed equilibrium temperatures. The original simple model proposed by van der Graaf, takes into account the total area of the aeration basin (Ab) to calculate aeration heat transfer term (Hi), which nealects the fact that the surface area relevant to surface aeration heat exchange is in reality an aerator's zone of influence in terms of creating a splash zone for heat transfer between water droplets and air. In other words, as the number of surface aerators is increased for a given basin surface area (Ab), the total aeration heat transfer surface area approaches that of the basin surface area assuming that the zones of influence do not disturb one another. To test this hypothesis, Equation 7 was adjusted in order to take into account the total zone of influence area (N*AZOI) rather than total basin area (Ab). Surface aeration zone of influence radius was set to 50 ft (15.24 m) based on aerial photo of the operational surface aerators in the system. Figure 1 (pg. 4) shows the comparison of results for simple, simple with adjusted aeration area, and complete temperature models. The influent temperature was set to 30°C and the effect of the difference in ambient air and influent temperature was investigated. According to the results, the simple model with adjusted aeration area produced results closer to those predicted by the complete temperature model. The need for this adjustment in the Simple model is more pronounced as the absolute difference between air and influent temperature increases.

Table 3: Complete Temperature Model Equations

Term Equation					
Solar Radiation	$H_{sr} = H_{sr,o}(1 - 0.0071C_c^2)A_b$ Thackson and Parker 1972: $H_{rr,o} = 4.18 * \left[a - b * \sin\left(\frac{2\pi d}{r} + c\right)\right]$		(8)		
	$a = 95.1892 - 0.3591 * k - 8.4537 * 10^{-3} * k^{-3}$	2	(9)		
	$b = -6.2484 + 1.6645 * k - 1.1648 * 10^{-2} * k$	2			
	$c = 1.4451 + 1.434 * 10^{-2} * k - 1.745 * 10^{-4}$	* k ²			
	Sectory and Stenstrom 1995: $H_{sr.o} = 6.42 \times 10^{-5} (-0.06401 + 1.3341 * alt + 0.2)$	$2008 * alt^2 - 0.0043 * alt^3 + 3.79e^{-5} * alt^41.37e^{-7} * alt^5)$	(10)		
Atmospheric Radiation	Novotny and Krenkel 1973, Deas and Lowney 200 $H = A_{12} \sigma f(1 - 3) B(T + 273 + 5)^{4} - \sigma (T + 273 + 5)^{4}$	00: 5\41			
	$n_{ar} = A_b o[(1 - A)p(1_a + 273.13) - c(1_w + 273.13)]$				
	$H_{ar} = 4.18 \times 10^{4} A_{b} [695(1-\beta) + 10.18(T_{w} - T_{a}) + 10.18(1-\beta)T_{a}]$				
	Atmospheric radiation includes long-wave atmospheric and water surface back-radiation balances. Atmospheric radiation factor (β) is a function of many variables (Anderson 1988) such as air moisture content, and concentrations of ozone and carbon dioxide. The effect of vapor pressure also decreases as the cloud cover increases. It was also noticed that the atmospheric radiation is an inverse function of the height of cloud for a given cloud amount. Albedo ("whiteness" in Latin) of the water surface (λ) is the fraction of incident radiation that is reflected. The non-reflected incident radiation fraction (1- λ) is absorbed and causes an increases in water temperature A water body also emits long-wave radiation (McCutcheon). Clouds and particles in the atmosphere (such as vapor) increase emissivity (ϵ).				
Evaportation	Argaman and Adams 1977:	T 11-0.0604T x 0.95			
	$n_{ev} = -4.16[1.145 \times 10](1 - 1_h) + 0.00 \times 10](1_w$ Harbeck (1958–1962): (for reservoirs up to about	$- I_{a}$ $J_{c} = I_{a} u_{w}^{A}$	(13)		
	$E = 2.91 \times 10^{-6} A_b^{-0.05} u_w (e_{a,w} - e_a) $ (14) The set water value a size resource (bl/m ²), o (T) is the highest pressure of water value a given temperature (T. ² C) that				
	can exist in equilibrium with a plan, free water surface (Deas and Lowney 2000):				
	$e_s(T) = 610.8e^{\left(\frac{17.27*T}{T+273.15}\right)}$		(15)		
Convection	Novotney and Krenkel 1973:	Argaman and Adams 1977:			
	$H_{c} = \rho_{a}c_{pa}(392A_{b}^{0.95})(u_{w} - u_{s}) * (T_{w} - T_{a})$ (16)	$H_{c} = 4.93 \times 10^{5} u_{w} A_{b}^{0.95} (T_{w} - T_{a})$	(17)		
	The difference in temperature between air and v (Talati and Stenstrom 1990).	water surface is the driving force for surface convection h	eat transfer		
	Argaman and Adams 1977:	0.0.06047.(1			
Aeration	$n_{ae} = 4.18 \times 4.52 \times 10^{-1} \text{NF} u_w [300(1_w - 1_a) + 2.920e^{-1000} u_u (1 - r_h) + 175e^{-1000} u_u (1_w - 1_a)]$ (16) For surface aeration, assuming contact air is saturated with water vapor and is in thermal equilibrium with water.				
	replace NFu _w with 2Q _a (Novotny and Krenkel 1973, Argaman and Adams 1977). Diffused aeration (Talati and Stenstrom 1990):				
	$H_{ae} = (sQ_a)\rho_a c_{pa}(T_w - T_a)A_b + 4914.6Q_a s \left\{ \frac{e_w [r_h + h_f (1 - r_h)]}{T_w + 273} - \frac{e_a r_h}{T_a + 273} \right\} $ (1)				
	Surface aeration (Talati and Stenstrom 1990):				
	$H_{ae} = (392 N F^{-0.05} u_w) s \rho_a c_{pa} (T_w - T_a) A_b + 4914.6 N_b + 4914.6$	$IFu_{w}s\left\{\frac{e_{w}[r_{h}+h_{f}(1-r_{h})]}{T_{w}+273}-\frac{e_{a}r_{h}}{T_{a}+273}\right\}$ (20)			
	Sensible heat transfer occurs due to contact (be the driving force. Furthermore, a water-phase ch humidity of air. Sensible heat transfer results in ter no temperature change occurs as a result of la vapor or vice versa). In general, heat loss due to a result of greater exposure of water to air, su aeration (Talati 1988).	etween air and water) and depends on the temperature hange can occur due to evaporation and is dependent mperature change while no phase change occurs. On the tent heat transfer but a change in water phase takes p aeration is dependent on the type of aeration (surface of rface aeration heat loss is typically higher than that d	difference as on the relative ne other hand, lace (liquid to or diffused). As ue to diffused		

Copyright © 2018 Water Environment Federation. All Rights Reserved. WSEC-2018-FS-013 Pulp and Paper Temperature Modeling

Conclusions

As with any modeling task, the model must be selected at the appropriate level of sophistication to provide the required results; all while balancing the amount of time and resources available. Engineering judgement is advocated for here. The tendency is to use the more complex model since more is better right? The problem with this tendency is that it is usually coupled with a lack of detailed input information needed to depict all of the parameters accurately. As a result, the input values selected for the complex model could be based on potentially erroneous assumptions. Garbage in, garbage out.

The simple temperature model summarized in this paper is typically a good candidate for modeling activated sludge tanks and aeration basins with reasonably small temperature differences of less than 20°C (Δ T<20 °C) between influent and air temperatures, and where the surface aeration is influencing the majority of the surface area, i.e., not much open space in the basin. Exceeding either condition without an appropriate adjustment, can result in an inaccurate picture of temperature variations in the basin. As a result, the first task a modeler should consider is to determine the trade-off between accuracy required and time available to develop accurate, representative input parameters. While more complex models can provide better prediction power, the additional data collection and modeling evaluation time can be expensive.

Parameter Description Value Unit Basin surface area Variable A_{b} m^2 0 Solar altitude Variable alt Variable A_{wg} Wall and ground surface area in contact with wastewater m^2 Zone of influence per surface gerator Variable m² Azoi Cc Cloud cover (0-10); clear: 0, Scattered: 3, Broken: 7.5, Overcast: 10 Variable _ Air specific heat 1,050 Cpa J/(kg.K) Water specific heat 4,187 J/(kg.K) Cpw Day number 1-365 d _ Variable m/d Е **Evaporation** rate Variable N/m² Vapor pressure at air temperature ea Variable N/m^2 e_{s,a} Saturation water vapor pressure at air temperature Variable Saturation water vapor pressure at water surface temperature N/m^2 e_{s,w} Variable N/m² Vapor pressure at water temperature ew F Surface aerator vertical spray area (each) Variable m^2 Heat generation due to denitrification 32,000 Hdenit. J/gNO_{3,N} Heat generation due nitrification 25,000 H_{nit}. J/gNH_{3,N} Η_{ου} Heat generation due biological oxygen removal 13,895 J/gO_2 Average daily absorbed solar radiation for clear sky conditions H_{sr.o} Variable $J/(m^2.d)$ 0 k Site latitude Variable Ν Number of aerators Variable Variable W Pae Power per aerator Total aeration air flowrate Variable m³/s Qa Basin effluent flowrate = $\sum_{i=1}^{n} Q_{inf,i}$ Variable m³/d Qeff Influent steam i wastewater flowrate Variable m³/d Qinf.i Denitrification rate Variable $g/(m^3.d)$ **r**_{denit} Air relative humidity Variable decimal **r**h Variable r_{nit.} Nitrification rate $g/(m^3.d)$ Variable ro,bio Oxygen consumption rate due to biological reaction $g/(m^3.d)$ Conversion factor 86,400 sec/day S Ta Air temperature above water surface Variable °C °C Ground temperature in contact with wastewater Variable Tg Influent wastewater temperature Variable °C Tinf °C Wastewater temperature in the basin Variable Tw Water surface velocity in the wind direction Variable m/s Us Variable Uw Wind velocity m/s W/(m².°C) U_{wg} Wall and ground interface heat transfer coefficient Variable Variable m³ V Basin volume Atmospheric radiation factor (range: 0.75-0.95) 0.87 β _ 0.97 Water surface emissivity 3 -Variable % Efficiency factor η Fraction of incident radiation reflected by water surface 0.03 λ _ Air density = $1.293*273/(T_a+273)$ Variable kg/m³ ρα Water density 998 kg/m³ ρw Stefan-Boltzmann constant 4.9E-3 J/(d.m².K⁴) σ

 Table 4: Nomenclature

Copyright © 2018 Water Environment Federation. All Rights Reserved. WSEC-2018-FS-013 Pulp and Paper Temperature Modeling

Additional Resources

E. R. Anderson (1954). Energy Budget Studies, Water-Loss Investigations: Lake Hefner Studies, Untied States Geological Survey, Professional Paper 269, Washington.

G. E. Harbeck, M. Kohler, G. E. Koberg (1958). Water-Loss Investigations: Lake Mead Studies. United States Geological Survey Professional Paper 298, United States Government Printing Office, Washington.

G. E. Harbeck (1962). A Practical Field Technique for Measuring Reservoir Evaporation Utilizing Mass-Transfer Theory. United States Geological Survey Professional Paper 272-E, United States Government Printing Office, Washington.

E. L. Thackston and F. L. Parker (1972). Geographical Influence on Cooling Ponds, WPCF Journal, Vol. 44, No. 7.

V. Novotny and P. Krenkel (1973). Evaporation and heat balance in aerated basins. AIChE Symposium, Volume: Water 1973.

Y. Argaman and C. Adams (1977). Comprehensive temperature model for aerated biological systems. Prog. Wat. Tech., Vol. 9, pp. 397-409, Pergamon Press.

S. N. Talati (1988). Heat Loss in Aeration Tank (M.Sc. Thesis). University of California, Los Angeles.

S. C. McCutcheon (1989). Water Quality Modeling – Volume I: Transport and Surface Exchange in Rivers. CRC Press, Boca Raton, Florida.

P. Sedory and M. K. Stenstrom (1995). Dynamic Prediction of Wastewater Aeration Basin Temperature. Journal of Environmental Engineering, Vol. 121, No. 9.

S. N. Talati and M. K. Stenstrom (1990). Aeration Basin Heat Loss, Journal of Environmental Engineering, Vol. 116, No. 1.

M. L. Deas and C. L. Lowney (2000). Water Temperature Modeling Review. California Water Modeling Forum Central Valley.

S. Gillot and P. A. Vanrolleghem (2003). Equilibrium temperature in aerated basins – comparison of two prediction models, Water Research 37, 3742-3748.

Hydromantis (2015). GPS-X Technical Reference, Hydromanric Environmental Solutions, Ontario, Canada.

Acknowledgments

WEF Industrial Wastewater Committee Chemicals and manufacturing Subcommittee

Primary Author:

Paul Marotta—AquAeTer Parsa Pezeshk—AquAeTer

Contributing Reviewers:

Americus Mitchell—FLUOR Joe Cleary—GeoSyntec