

LIFT: Getting Involved 101 -

Featuring a Biosolids to Energy Project Example

WEF-WERF Webcast April 20, 2016

How to Participate Today

- Audio Modes
 - Listen using Mic & Speakers
 - Or, select "Use Telephone" and dial the conference (please remember long distance phone charges apply).
 - Submit your questions using the Questions pane.
- A recording will be available for replay shortly after this web seminar.

Today's Moderator

Jim McQuarrie Chief Innovation Officer, MWRD Denver, CO

Agenda (Eastern Times)

1:00 **Welcome and Overview of Agenda** *Jim McQuarrie, MWRD Denver (Moderator)*

Part 1: Overview of LIFT and How to Engage

- 1:05 **LIFT Programs and Activities** *Jeff Moeller, WERF*
- 1:20 Targeted Collaborative Research Allison Deines, WERF
- 1:25 **LIFT MA Toolbox** *Fidan Karimova, WERF*
- 1:30 **Q&A**

Agenda (Cont.)

(Eastern Times)

Part 2: Example Collaborative Project

- 1:40 **Background** *Jeff Moeller, WERF*
- 1:45 **Genifuel Hydrothermal Processing Bench Scale Evaluation** *Philip Marrone, Leidos, Inc.*
- 2:05 Hydrothermal Processing in Wastewater Treatment: Planning for a Demonstration Project

 Jim Oyler, Genifuel
- 2:10 **Project Participant Perspectives** *Paul Kadota, Metro Vancouver*
- 2:15 Q&A
- 2:30 Adjourn

Speaker

Jeff Moeller, P.E.Director of Water Technologies, WERF

E-mail: <u>jmoeller@werf.org</u>
Web: <u>www.werf.org/lift</u>

	3		ntion Series	
	0.11	PICA Corp.	In-Line Inspection Tools	
April 26	Collection	Steel Toe Group	DIP System	
, .p =0	Systems	In-Pipe Technology Company	Pearl In-Pipe Technology/ BioConversion Solutions	
	P-Recovery &	Ostara	Pearl	
May 17	17	Paques	Phospaq	
	Scale Prevention	HydroFlow Holdings USA, LLC	Hydropath Technology	
	Biosolids to	SCFI Limited	AquaCritox	
June 14	Energy &	Algae Systems, LLC	Direct conversion of wastewater sludge to oil via HTL	
	Biofermentation	ABS Inc.	Biofermentation	
		RainGrid, Inc.	Cistern Controller and Data Management Platform	
	Stormwater and	Blue Water Satellite, Inc.	Remote Sensing Solutions for Monitoring Water and Land	
July 19	Watersheds	C.I. Agent Storm Water Solutions, LLC	C.L.A.M.	
		Parjana Distribution	Energy-Passive Groundwater Recharge Product	

- Discover new technologies
- Connect with others with similar needs, technology interests, and desired expertise
- Collaborate on research and technology ideas, proposals, projects, demonstrations, and implementation

currently in beta, release expected summer 2016

New Programs of Note

- Program to See and Visit New Technologies
- Program to Better Connect Utilities and Universities

New Projects of Note

- Fostering Research and Innovation within Water Utilities
- Guidelines for Utilities Wishing to Conduct Pilot Scale Demonstrations

Agenda (Eastern Times)

Welcome and Overview of Agenda 1:00 Jim McQuarrie, MWRD Denver (Moderator)

Part 1: Overview of LIFT and How to Engage

1:05 LIFT Programs and Activities Jeff Moeller, WERF

Targeted Collaborative Research 1:20 Allison Deines, WERF

1:25 LIFT MA Toolbox Fidan Karimova, WERF

1:30 Q&A

Speaker

Allison Deines Director of Special Projects, **WERF**

TCR Statistics

- Projects range in size from \$25,000 to \$300,000. Average project size is \$50,000.
- Most common contribution is \$5,000.
- 18 organizations gave in 2015.

WERF helps raise funds and provides financial and project management to support technology projects.

Bioelectro Technology

- Process to treat biosolids
- Low voltage gradient combined with additives
- Generates exothermic reaction
- Short detention time for disinfection <1.0 hr
- Heat generation for biosolids stabilization

Potential Benefits

- Small tankage required for pre-treatment
- Is effective for small, aerobic digesters
- Disinfects to Class A standards
- Exothermic reaction aids thermophilic digestion

E-beam Technology

<u>Overall Objective</u>: Obtain empirical data to evaluate the applicability of high energy eBeam technology to hydrolyze sewage sludge for enhanced biogas production

Specific Objectives

- 1. Identify the influence of eBeam dose and solids content on methane gas production
- 2. Identify chemical and biological properties of sludges processed with eBeam technology to identify byproducts that have high commercial value

Potential Benefits

- Reduction in sludge viscosity
- Increased sludge loading rates
- Reduced sludge digester residence times
- Enhanced methane production
- Increased sludge de-waterability
- Class A biosolids
- Value-added sludge by-products

Final Thoughts

- The TCR program is set up to be flexible for WERF subscribers and technology providers.
- Projects are most successful when technologies have a utility champion.
- TCRs can support both bench-scale and pilotscale research.

Agenda (Eastern Times)

1:00 Welcome and Overview of Agenda

Jim McQuarrie, MWRD Denver (Moderator)

Part 1: Overview of LIFT and How to Engage

- 1:05 **LIFT Programs and Activities** *Jeff Moeller, WERF*
- 1:20 Targeted Collaborative Research Allison Deines, WERF
- 1:25 **LIFT MA Toolbox** *Fidan Karimova, WERF*
- 1:30 **Q&A**

Speaker

Fidan Karimova Water Technology Collaboration Manager, **WERF**

WEF MA's

2015 Member Association WERF Supporters

- **Alabama's Water Environment Association**
- **Arizona Water Association**
- **Atlantic Canada Water & Wastewater Association**
- **California Water Environment Association Chesapeake Water Environment Association**
- Hawaii Water Environment Association
- **Illinois Water Environment Association** Kentucky-Tennessee Water Environment Association
- Mississippi Water Environment Association
- Missouri Water Environment Association
- **Nebraska Water Environment Association**
- New England Water Environment Association, Inc.
- New Jersey Water Environment Association New York Water Environment Association, Inc.
- North Dakota Water Environment Association
- **Pacific Northwest Clean Water Association**
- Pennsylvania Water Environment Association
- **Rocky Mountain Water Environment Association**
- **South Dakota Water Environment Association**
- Virginia Water Environment Association
- **Water Environment Association of South Carolina**
- Wisconsin Wastewater Operators' Association

Agenda (Cont.)

(Eastern Times)

Part 2: Example Collaborative Project

- 1:40 **Background** *Jeff Moeller, WERF*
- 1:45 **Genifuel Hydrothermal Processing Bench Scale Evaluation** *Philip Marrone, Leidos, Inc.*
- 2:05 Hydrothermal Processing in Wastewater Treatment:
 Planning for a Demonstration Project

 Jim Oyler, Genifuel
- 2:10 **Project Participant Perspectives** *Paul Kadota, Metro Vancouver*
- 2:15 Q&A
- 2:30 Adjourn

Project Background

- May 2013: LIFT B2E Focus Group Launched
 - Technology Matrix
 - o WEFTEC 2013
- Jan 2014: Genifuel Fact Sheet
 - o Expert Review

- Mar 2014: Genifuel B2E Focus Group Presentation
- April/May 2014: Calls w/ Genifuel & Interested Utilities
 Project Concept Developed

Project Background (cont.)

- Summer/Fall 2014: Funding Assembled
 - City of Calgary
 - > City of Orlando
 - City of Santa Rosa
 - > Delta Diablo Sanitation District
 - Eastman Chemical Company
 - Melbourne Water Corporation
 - Metro Vancouver
 - Silicon Valley Clean Water
 - ➤ Toho Water Authority
 - ➤ US EPA
 - ➤ DOE (in-kind)

Project Background (cont.)

- June 2014: Request for Qualifications Issued
- Sept 2014: Leidos Selected

Project Background (cont.)

- Sept/Oct 2014: PSC Formed
 - o Mo Abu-Orf, AECOM
 - o Bob Forbes, CH2M Hill
 - o Angela Hintz, ARCADIS
 - o Bryan Jenkins, University of California Davis
 - o Patricia Scanlan, Black & Veatch
 - o Jeff Tester, Cornell University

Project Background (cont.)

• Oct 2014: Full Proposal

• Jan 2015: Revised Proposal

• Feb 2015: Project Kickoff

• April 2016: Project Completed

Agenda (Cont.)

(Eastern Times)

Part 2: Example Collaborative Project

- 1:40 **Background** *Jeff Moeller, WERF*
- 1:45 **Genifuel Hydrothermal Processing Bench Scale Evaluation** *Philip Marrone, Leidos, Inc.*
- 2:05 Hydrothermal Processing in Wastewater Treatment:
 Planning for a Demonstration Project

 Jim Oyler, Genifuel
- 2:10 **Project Participant Perspectives** *Paul Kadota, Metro Vancouver*
- 2:15 Q&A
- 2:30 Adjourn

Speaker

Philip Marrone, Ph.D.
Senior Chemical Engineer,
Leidos, Inc.

Outline

- > Introduction/Motivation
- Objectives
- > Sludge Feed Procurement/Preparation
- > HTP Test Equipment and Matrices
- > HTP Test Observations
- > Sampling and Analysis
- > Test Results
- > Summary/Conclusions
- > Recommendations

Introduction

Types of Hydrothermal Processing:

Process	Oxidant?	Oxidant? Catalyst? Water State		Product Phase of Interest
Hydrothermal Carbonization (HTC)	No No Subcritical		Solid	
Hydrothermal Liquefaction (HTL)	No	Possible	Subcritical	Liquid
Catalytic Hydrothermal Gasification (CHG)	No	Yes	Subcritical	Gas
Supercritical Water Gasification (SCWG)	No	Possible	Supercritical	Gas
Supercritical Water	No Yes	Possible Possible	Supercritical Subcritical	Gas

Motivation

> Advantages of Hydrothermal Processing (subcritical):

- Ideal for high water content feeds (e.g., lignocellulosics, manure, algae)
- No drying (avoid heat of vaporization energy cost)
- Utilizes all of biomass
- Converts organic portion of feed to valuable fuel products

> Wastewater Treatment Sludge:

- Byproduct of wastewater treatment process
- Must be disposed (by landfill or land application) at cost to treatment plant
- Anaerobic digestion reduces but does not eliminate solids
- > Limited previous research on HTL of wastewater treatment sludge

Objectives

 Overall: Assess technical performance and potential viability of HTL-CHG process on wastewater sludge feed through proof-ofconcept, bench-scale tests.

• Specific:

- 1. Determine sludge concentration that can be pumped.
- 2. Quantify the amount of biocrude and methane produced.
- 3. Characterize all feed and product streams.
- 4. Verify mass balance closure (total mass and carbon) to within 15%.
- 5. Analyze economic potential based on biocrude quality and current sludge handling data.
- 6. Assess areas of future work based on test observations and results.

Sludge Feed Procurement/Preparation

- > Sludge Types Tested:
 - Primary
 - Secondary
 - Post-digester (Digested Solids)

> Sludge Provider:

Metro Vancouver – Annacis Island WWTP

Annacis Island WWTP, Delta, BC, Canada

> Sludge Preparation:

Sludge	Initial Solids Conc.	Dewatering Method	Autoclave Conditions	Solids Conc. At Shipment	Dilution at PNNL	Final Solids Conc.
Primary	4.5 wt%	Filter press (40 psi for 20 min; 300 μm filter), followed by hand press	Yes (121°C for 5 hrs)	26.0 wt%	Yes	11.9 wt%
Secondary	3.9 wt%	55 L Dewatering bags for 48 hrs	Yes (121°C for 5 hrs)	10.9 wt%	No	10.0 wt%
Digested Solids	28 wt%	None	None	28 wt%	Yes	16.4 wt%

Sludge Feed Procurement/Preparation

Primary (11.9 wt % solids)

Secondary (10.0 wt% solids)

Post-digester (16.4 wt % solids)

Hydrothermal Processing Tests – Test Matrices

• HTL: 1 test per sludge feed types (post-digester test repeated):

	Feed	Feed	Reaction	Avg.	Liquid Hourly	Mean	т	est Duration		No. of Steady State
Sludge Feed	Conc. (wt% solids)	Flow Rate (L/hr)	Temperature (°C)	System Pressure (psig)	Space Velocity (hr ⁻¹)	Residence Time (min)	Total Feed (hrs)	Baseline steady state (hrs)	RLD steady state (hrs)	Liquid Samples (Set- asides)
Primary	11.9	1.5	318-353	2948	2.1	18	7.4	2.0	1.5	3
Secondary	9.7	1.5	276-358	2919	2.1	19	7.5	2.0	1.0	3
Digested Solids	16.0	1.5	332-358	2906	1.2	30	7.2	2.7	1.5	4

• CHG: 1 test per each HTL combined steady state aqueous phase product:

HTL Aqueous	Feed Flow	Avg. Reactor			Test Dura	Test Duration (hr)		Catalyst (Ru
Effluent Feed Source	Rate (mL/hr)	Temperature (°C)	Pressure (psig)	Residence Time (min)	Total Feed	Steady State	Removal (Raney Ni) (g)	on graphite) (g)
Primary	39.7	347	3023	15	49.3	20.6	8.05	10.71
Secondary	43.8	346	2883	15	45.4	35.9	8.19	11.82
Digested Solids	41.2	348	2959	15	31.4	25.4	8.98	11.65

Hydrothermal Processing Tests – Observations

HTL steady state liquid effluent

Separated biocrude

Solids from filter vessel

CHG aqueous feed (far left) and liquid effluent samples

CHG aqueous effluent

DN	NL HTL Laboratory (BSEL-156)		
	Ammonia and Chemical Oxygen Demand (COD)		Hach Kits
•	Ash, Dry Solid Content, Filtered Oil Solids, Moisture, Weight	•	Gravimetric Determinations
•	Light Hydrocarbons and Permanent Gases (HTL Samples)	•	In-line INFICON Micro GC with a Thermal Conductivity Detector (TCD)
•	Light Hydrocarbons and Permanent Gases (CHG Samples)	•	Off-line GC with a TCD
•	pH	•	pH meter
•	Density and Viscosity	•	Gravimetric or Anton Paar Stabinger Viscometer
•	Anions Dissolved Organics	•	Ion chromatography High Performance Liquid Chromatography (HPLC) Refractive
•	Dissolved Organics		Index Detection (RI) Inductively Coupled Plasma (ICP) –
•	Metals		Optical Emission Spectrometry (OES)
Off	f site Laboratories		
•	Elemental Analysis	•	ALS Environmental Laboratory in Tucson, AZ, ASTM Methods
•	Total Acid Number	•	ALS Environmental Laboratory in Tucson, AZ ASTM Method D3339
•	Total Organic Carbon	•	ALS Environmental Laboratory in Jacksonville FL, EPA Method 9060
	Siloxanes		Atmospheric Analysis and Consulting, Ventura, CA, EPA TO-15

Test Results - Biocrude

HTL Biocrude Quality

	E	iocrude from	Sludge	Biocrude	from Algae
Data	Primary	Secondary	Post-Digester	Saccharina spp.	Nannochloropsis sp.
wt% Carbon (dry)	76.5	72.5	78.5	79.4	79.2
wt% Hydrogen (dry)	10.1	8.7	9.51	8.0	10.0
H:C molar ratio	1.6	1.4	1.4	1.2	1.5
wt% Oxygen(dry)	8.1	6.5	6.21	8.3	5.7
wt% Nitrogen(dry)	4.3	5.1	4.46	4.1	4.7
wt% Sulfur (dry)	0.63	0.90	1.16	0.3	0.5
wt% Ash (dry)	0.38	6.3	0.21	Not determined	Not determined
wt% Moisture	13.0	1.0	13.5	9.2	7.8
TAN (mg KOH/g)	65.0	44.8	36.0	36	Not determined
Density (g/ml)	1.000	0.985	1.013	1.03	0.95
Kinematic viscosity (cSt)	571	624	1160	1708	205
Heating Value (MJ/kg)	37.8	34.8	38.0	-	-

Test Results - CHG Aqueous Effluent

Organic Removal

COD (units in ppm)

Sludge Feed	HTL Feed	Post-HTL	Pre-IX	Post-IX	Post-CHG
Primary	187,000	41,000	40,800	20,300	54
Secondary	153,000	73,000	72,300	21,700	25
Digested Solids	203,000	48,200	49,900	23,700	19

> 99% reduction in COD over HTL-CHG process

• Sulfate / Catalyst Performance

-			
	Total Sulfur (ppm)		
	Raney Ni	Ru/C	
Primary	4100	1700	
Secondary	16,000	3400	
Digested Solids	9900	1410	

Ru Catalyst active at end of each CHG test (52-85 hrs exposure), but total sulfur concentrations on catalyst indicate poisoning per PNNL (> 1000 ppm)

Water Quality

Analysis	Regulatory Limit*	CHG Effluent
BOD cBOD	< 60 ppm < 15 ppm	√ (< 26 ppm)**
Total N	< 2 ppm	X (> 1100 ppm)
Total P	< 0.2	√ (< 1 ppm)

CHG effluent may be capable of meeting regulatory requirements for discharge except for nitrogen

Test Results - CHG Gas

Siloxanes

- Found in biogas; silica formed in combustion is abrasive and insulating
- Analyzed gas effluent for 7 specific siloxanes and 2 precursors by laboratory used by Silicon Valley Clean Water WWTP

Feed	Test	Siloxane Conc.
Primary	HTL	All < 263 ppb
Post-Digester	HTL	All < 2886 ppb
Primary	CHG	All < 22.7 ppb except trimethylsilanol = 43.3 ppb
Secondary	CHG	All < 43 ppb
Post-Digester	CHG	All < 40 ppb

- Gas engine fuel specifications:
 - GE Jenbacher < 3 ppm
 - MWM Caterpillar < 800 ppb
- All CHG gas siloxane concentrations met engine specs
- Si partitions mostly into aqueous phase effluent

Test Results - HTL Solids

	Primary	Secondary	Post-digester
Sludge Feed (g/hr)	1541	1499	1570
Sludge Ash (wt%)	7.5	16.2	28.0
HTL Solids (g/hr)	17.4	29.8	88.9
HTL Solids Ash (wt%)	64.4	64.5	73.3
HTL Solids Weight Reduction (%)	99	98	94

- · Post-digester sludge generated the highest amount of solids and %ash
- . HTL process results in high solids reduction relative to sludge feed weight

Summary/Conclusions

- Biocrude and methane successfully generated from all 3 sludge types.
- Secondary sludge results possibly affected by equipment issues, low solids content, autoclaving, and inherent nature of sludge.
- Mass balance closure within ± 15% achieved for all total mass and carbon balances but one.
- \bullet 94 samples for a total of ~2,500 analytical data results with adequate precision and accuracy.
- No difficulties experienced pumping sludge feeds; potential to process at higher conc.
- Biocrude quality appeared comparable to that from other biomass feeds (e.g., algae), was ~ 80% of heating value of petroleum crude, and needs to be upgraded.
- Had > 99% COD reduction in effluent and 94-99% solids reduction relative to feed.
- Siloxane concentrations in the CHG product gas were below engine limits.
- The CHG aqueous effluent is capable of meeting regulatory limits except total N.
- The CHG Ru/C catalyst and Raney Ni guard bed performed well, but S poisoning occurred.

The overall results of this proof-of-concept test program are sufficiently promising to justify further investigation of the HTL-CHG technology for application to sludge.

Recommendations

- Determine the HTL optimal sludge feed concentration for each sludge type and a representative combination of primary and secondary sludge.
- Perform long-term operation tests on a single, integrated HTL-CHG system at pilot-scale that is representative of the equipment and design that would be installed at a WWTP.
- Develop and demonstrate an better temperature control and an effective method to remove sulfate species from HTL effluent to avoid poisoning of the downstream CHG catalyst.
- Determine the CHG ruthenium catalyst replacement frequency.
- Perform an energy balance on an integrated, representative pilot-scale system.
- Perform a burner or small engine test with biocrude produced from sludge.
- Perform a TCLP test on HTL solids to determine proper classification for disposal.
- Identify trace organic contaminants in feed and determine fate after HTL-CHG processing.
- Characterize dewatered sludge filtrate for plant recycle.
- Identify interested WWTP facilities and perform a detailed site-specific economic analysis and GHG reduction analysis to assess the economic viability for installation of HTL-CHG.

Agenda (Cont.)

(Eastern Times

Part 2: Example Collaborative Project

- 1:40 **Background** *Jeff Moeller, WERF*
- 1:45 **Genifuel Hydrothermal Processing Bench Scale Evaluation** *Philip Marrone, Leidos, Inc.*
- 2:05 Hydrothermal Processing in Wastewater Treatment: Planning for a Demonstration Project

 Jim Oyler, Genifuel
- 2:10 **Project Participant Perspectives**Paul Kadota, Metro Vancouver
- 2:15 Q&A
- 2:30 Adjourn

Speaker

Jim Oyler President, Genifuel

Hydrothermal Processing in Wastewater Treatment

Planning for a Demonstration Project

Paul Kadota

James Oyler

Overview

- This presentation shows a proposed project to scale-up a Hydrothermal Processing (HTP) system at a Water Resource Recovery Facility (WRRF)
- The demonstration project follows a key recommendation of the LIFT Report
- The sponsor is Metro Vancouver (MV)

Metro Vancouver's Interest in HTP

- Metro Vancouver saw HTP pilot project as a way to explore solutions to key issues
 - Rising cost of solids management and increasing distance to disposal sites
 - High cost of installing AD at smaller sites
 - New technology for future system upgrades to improve process and reduce cost
 - A pathway to meet environmental goals for lower emissions and greater energy recovery

The Scaled-Up System

- The Metro Vancouver system is based on a pilot-scale HTP system that has recently completed commissioning
- The Metro Vancouver system will be 5x larger than the recently completed system
- Will install in two stages—oil formation in Stage 1, followed by oil + gas in Stage 2.

Recently Commissioned HTP System

Annacis Island Plant

HTP Will Process Undigested Solids

- Combined stream of primary and secondary solids (secondary is Waste Activated Sludge)
- Combined stream will be taken as a side stream from the digester feed
- Centrifuge will be used to increase solids from 3% to 20%
 - Undigested cake at 20% solids feeds the hydrothermal system
 - Centrate returns to headworks

HTP Size Compared to AD Alternative

MEASURE	НТР	AD
Area occupied	6,727 ft ² (625 m ²)	15,327 ft² (1424 m²)
Building Height	20 ft (6.1m)	48 ft (14.6 m)

• HTP footprint is 44% of AD

GHG Reduction (CO₂ emissions)

ITEM	НТР	AD
Avoided Emissions via HTL Biocrude	860 t/y	N/A
Avoided Emissions via Methane	190 t/y	350 t/y
Total CO ₂ Avoided	1,050 t/y	350 t/y

• HTP reduces CO₂ emissions 3x more than AD

20-Year Cost (Net Present Value)

MEASURE	HTP (USD \$000)	AD (USD \$000)
Capital Expense	\$5,805	\$5,346
Operating Expense	\$237	\$444
Revenue	\$124	\$26
20-Year Net Cost*	\$7,305	\$11,126

- Outcome of analysis is case-specific
- In this example, HTP cost is 34% less than AD

* Interest = 7%; OpEx Annual Increase = 3.5%; Oil and Gas Annual Price Increase = 4%

Additional Benefits of HTP

- HTP is thermochemical; does not rely on organisms that can cause 'upsets'
- Protects against escalating sludge disposal cost
- Low retention time, complete sterilization, odor compounds are reduced
- HTP destroys organics such as pesticides, pharmaceuticals, flame retardants
- Ammonia and phosphorus can be recovered

Conclusions

- Pilot project will provide valuable data and experience with hydrothermal processing
- Follows recommendation from LIFT program
- Successful project can form basis of large scale implementation
- A potentially disruptive technology for the wastewater industry

Agenda (Cont.)

(Eastern Times)

Part 2: Example Collaborative Project

- 1:40 **Background** *Jeff Moeller, WERF*
- 1:45 **Genifuel Hydrothermal Processing Bench Scale Evaluation** *Philip Marrone, Leidos, Inc.*
- 2:05 Hydrothermal Processing in Wastewater Treatment:
 Planning for a Demonstration Project

 Jim Oyler, Genifuel
- 2:10 **Project Participant Perspectives** *Paul Kadota, Metro Vancouver*
- 2:15 Q&A
- 2:30 Adjourn

Speaker

Paul KadotaProgram Manager,
Metro Vancouver

Metro Vancouver's Involvement and Experience

How to Participate Today

- Audio Modes
 - Listen using Mic & Speakers
 - Or, select "Use Telephone" and dial the conference (please remember long distance phone charges apply).
 - Submit your questions using the Questions pane.
- A recording will be available for replay shortly after this web seminar.

