

- George Tchobanoglous
 - Introduction to Potable Reuse
- Bahman Sheikh
 - Current and Future Role of Non-potable Reuse
- Germano Salazar-Benites
 - HRSD's SWIFT Project

Our Next Speaker

George Tchobanoglous

Water Environ Federation

Professor Emeritus Department of Civil and Environmental Engineering University of California, Davis

	Cost, \$/10	^a gal (\$/AF)	Convoyance	
Treatment	management	management	facilities	
210 - 2.76	0.03 - 0.15 (10 - 50)	0.21 – 2.38 (70 – 775)	0.31 – 3.07 (100 – 1,000	
1.23 – 2.15	0.03 - 0.15		0.31 – 3.07	
(400 –700)	(10 – 50)	n.a.	(100 – 1,000)	
2.76 - 3.84	0.06 - 0.31	0.21 – 2.15	0.92 - 6.14	
(900 – 1,250)	(20 – 100)	(70 – 700)	(300 – 2,000)	
5.52 - 6.44	0.06 - 0.31	0.31 – 0.61	1.23 – 9.21	
(1,800 - 2,100)	(20 – 100)	(100 – 200)	(400 – 3,000	
1.23 –	3.99		0.31 – 1.84	
(400 – 1	(400 – 1,300)		(100 – 600)	
	1 20 2 02		031-123	
-	Treatment 210 - 2.76 900) 1.23 - 2.15 (400 - 700) 2.76 - 3.84 (900 - 1,250) 5.52 - 6.44 (1,800 - 2,100) 1.23 - (400 - 7)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline Cost, \$/10^3 gal (\$/AF) \\ \hline \hline Treatment & Residuals \\ management & management \\ \hline 10-2.76 & 0.03-0.15 & 0.21-2.38 \\ \hline 900) & (10-50) & (70-775) \\ \hline 1.23-2.15 & 0.03-0.15 & (70-775) \\ \hline 1.23-2.15 & 0.03-0.15 & (400-700) & (10-50) & n.a. \\ \hline 2.76-3.84 & 0.06-0.31 & 0.21-2.15 & (900-1,250) & (20-100) & (70-700) \\ \hline 5.52-6.44 & 0.06-0.31 & 0.31-0.61 & (1800-2,100) & (20-100) & (100-200) \\ \hline 1.23-3.99 & (400-1,300) & n.a. \\ \hline \end{tabular}$	

Range, kWh/103 galTypical kWh/103 galfootprint kg CO2 $_{2e}$ /103 gaSecondary treatment without uutient removal $1.35 - 1.05$ 1.25 0.33 0.63 Fertiary treatment with nutrient emoval effluent filtration $1.95 - 1.60$ 1.85 0.49 0.93 Advanced water treatment $3.25 - 3.50$ 0.87 1.65 Decean desalination $9.50 - 14.75$ 2.00 3.17 6.00 Brackish water desalination $3.10 - 6.20$ 5.85 1.55 2.93 Interbasin transfer of water, Calfornia State Water Project $7.92 - 9.92$ 9.20 2.43 4.60 Dorventional water treatment $0.30 - 0.40$ 0.37 0.10 0.19		E	nergy required		Carbon
Fechnology/water source kWh/10 ³ gal kWh/10 ³ gal kWh/m ³ kg CO _{2e} /10 ³ gal Secondary treatment without utrient removal 1.35 – 1.05 1.25 0.33 0.63 Fertiary treatment with nutrient emoval effluent filtration 1.95 – 1.60 1.85 0.49 0.93 Advanced water treatment 3.25 – 3.50 0.87 1.65 Dcean desalination 9.50 – 14.75 1.20 3.17 6.00 Brackish water desalination 3.10 – 6.20 5.85 1.55 2.93 Interbasin transfer of water, Colorado River water 7.92 – 9.92 9.20 2.43 4.60 Olorado River water 6.15 – 7.40 6.15 1.62 3.07 Colorado River water 0.30 – 0.40 0.37 0.10 0.19		Range,	Турі	cal	footprint
Secondary treatment without nutrient removal $1.35 - 1.05$ 1.25 0.33 0.63 Tertiary treatment with nutrient emoval effluent filtration $1.95 - 1.60$ 1.85 0.49 0.93 Advanced water treatment $3.25 - 3.50$ 0.87 1.65 Dcean desalination $9.50 - 14.75$ 2.00 3.17 6.00 Brackish water desalination $3.10 - 6.20$ 5.85 1.55 2.93 Interbasin transfer of water, California State Water Project $7.92 - 9.92$ 9.20 2.43 4.60 Olorado River water $6.15 - 7.40$ 6.15 1.62 3.07 Conventional water treatment $0.30 - 0.40$ 0.37 0.10 0.19	Technology/water source	kWh/103 gal	kWh/103 gal	kWh/m ³	kg CO _{2e} /10 ³ ga
Tertiary treatment with nutrient removal effluent filtration $1.95 - 1.60$ 1.85 0.49 0.93 Advanced water treatment $3.25 - 3.50$ 0.87 1.65 Dcean desalination $9.50 - 14.75$ 12.00 3.17 6.00 3rackish water desalination $3.10 - 6.20$ 5.85 1.55 2.93 nterbasin transfer of water, California State Water Project $7.92 - 9.92$ 9.20 2.43 4.60 otor water $6.15 - 7.40$ 6.15 1.62 3.07 conventional water treatment $0.30 - 0.40$ 0.37 0.10 0.19	Secondary treatment without nutrient removal	1.35 – 1.05	1.25	0.33	0.63
Advanced water treatment 3.25 - 3.50 0.87 1.65 Ocean desalination 9.50 - 14.75 12:00 3.17 6.00 3rackish water desalination 3.10 - 6.20 5.85 1.55 2.93 nterbasin transfer of water, California State Water Project 7.92 - 9.92 9.20 2.43 4.60 Olorado River water 6.15 - 7.40 6.15 1.62 3.07 Colorado River water 0.30 - 0.40 0.37 0.10 0.19	Tertiary treatment with nutrient removal effluent filtration	1.95 – 1.60	1.85	0.49	0.93
Ocean desalination 9.50 - 14.75 12.00 3.17 6.00 Brackish water desalination 3.10 - 6.20 5.85 1.55 2.93 Interbasin transfer of water, California State Water Project 7.92 - 9.92 9.20 2.43 4.60 Interbasin transfer of water, Colorado River water 6.15 - 7.40 6.15 1.62 3.07 Conventional water treatment 0.30 - 0.40 0.37 0.10 0.19	Advanced water treatment	3.25 - 3.50		0.87	1.65
Brackish water desalination 3.10 - 6.20 5.85 1.55 2.93 Interbasin transfer of water, Zalifornia State Water Project 7.92 - 9.92 9.20 2.43 4.60 Interbasin transfer of water, Colorado River water 6.15 - 7.40 6.15 1.62 3.07 Conventional water treatment 0.30 - 0.40 0.37 0.10 0.19	Ocean desalination	9.50 - 14.75	12.00	3.17	6.00
Interbasin transfer of water, Zalifornia State Water Project 7.92 – 9.92 9.20 2.43 4.60 Interbasin transfer of water, Colorado River water 6.15 – 7.40 6.15 1.62 3.07 Conventional water treatment 0.30 – 0.40 0.37 0.10 0.19	Brackish water desalination	3.10 - 6.20	5.85	1.55	2.93
Interbasin transfer of water, Colorado River water 6.15 – 7.40 6.15 1.62 3.07 Conventional water treatment 0.30 – 0.40 0.37 0.10 0.19	Interbasin transfer of water, California State Water Project	7.92 - 9.92	9.20	2.43	4.60
Conventional water treatment 0.30 – 0.40 0.37 0.10 0.19	Interbasin transfer of water, Colorado River water	6.15 - 7.40	6.15	1.62	3.07
	Conventional water treatment	0.30 - 0.40	0.37	0.10	0.19
Vembrane-based water reatment 1.00 -1.50 1.25 0.33 0.63	Membrane-based water treatment	1.00 -1.50	1.25	0.33	0.63

Project	Capacity, m3/s	In operation since
Groundwater augm	entation	
Montebello Forebay, Los Angeles County, California	2.35	1962
Orange County Water District, Ground Water Replenishment System (GWRS)	4.38	2008
West Basin, California, USA	0.55	1993
Surface water augm	entation	
Gwinnett County, Georgia, USA	2.63	2000
Upper Occoquan Service authority, Virginia, USA	2.37	1978
San Diego, California, USA	1.31	2020 (?)
Singapore NEWater	0.36	2000
Raw water augme	ntation	
Big Spring, Texas, USA		
Village of Cloudcroft, New Mexico, USA		
Drinking water augm	entation	
City of Windhoek, Namibia	0.24	1968
Pure Cycle Corporation, Colorado, USA	_ a	1972 – 1980
^a Individual single home unit		

NATURAL AND SYNTHETIC TRACE CONSTITUENTS OF CONCERN RELATED TO CHRONIC TOXICITY IN POTABLE REUSE

Category	Examples
Endocrine disrupting compounds	Pharmaceuticals, dioxin and similar compounds, polychlorinated biphenyls, pesticides, plasticizers such as bisphenol A.
Food and food additives	Phytoestrogens, sucralose
Household chemicals	Bisphenol A (BPA), flame retardants
Industrial chemicals	1,4-dioxane, tetrachloroethane
Natural chemicals	17ß-esteadiol, geosmin, phytoestrogens,
Personal care products	Fragrances, hair dye, pigments, sunscreen ingredients, triclosan
Pesticides	Atrazine, diuron, fipronil, lindane
Pharmaceuticals and metabolites	Analgesics antibiotics, ethinyl estradiol
Transformation products	Bromoform, chloroform, N-nitroso dimethylamine (NDMA), trihalomethanes

Water Environment

WITH ADVANCED W	CE CONSTITUENT	S RELATED TO CH T PROCESSES IS W	RONIC TOXICITY /ELL ESTABLISHED
The greater DEVELOPMENT OF F VALUES FOR POTA	Concern in is acute probabilistic bi BLE REUSE TO SA	public water toxicity ASED REQUIRED ATISFY PUBLIC HE	C SUPPLIES
Item	Enteric virus	Giardia	Cryptosporidium
Untreated wastewater	10 ⁵ virus/L	10 ⁵ cysts/L	10 ⁴ oocysts/L
maximum density			
maximum density Tolerable drinking water density (TDWD)	2.2 x 10 ⁻⁷ virus/L	6.8 x 10 ⁻⁶ cysts /L	1.7 x 10 ⁻⁶ oocysts /
maximum density Tolerable drinking water density (TDWD) Ratio of TDWD to wastewater density	2.2 x 10 ⁻⁷ virus/L 2.2 x 10 ⁻¹²	6.8 x 10 ⁻⁶ cysts /L 6.8 x 10 ⁻¹¹	1.7 x 10 ⁻⁶ oocysts / 1.7 x 10 ⁻¹⁰

			a anadit
Process	Virus	Giardia	
Bono	hmark troatme		Cryptosponulum
Denc			
Secondary treatment	2	2	2
MF/UF	0	4	4
RO	2	2	2
UV/H ₂ O ₂	6	6	6
Water treatment	4	4	4
Total credit	14	18	18
Required credits	12	10	10
Additional log-remo	val values with	other treatm	ent processes
Aquifer storage	6	0	0
Ozone	4	3	1
Cl ₂ disinfection	4	2	0

			a roductic	20
Deserve	Deferments meritaring method			
Process	Tetel treatment trein 1	v	0	U
Dimensional and the transformed	Na aviation and the d		•	
Primary and secondary treatment	No existing method	1	0.	1
	I wice daily pressure decay testing	0	4.0	4.0
		1.5	1.5	1.5
		6	0	0
ESB with free Cl ₂ , CT = 900 mg•min/L		6	3	0
Total, treatment train 1	Tatal tasatas ant tas'a O	13.5	14.5	11.5
Delenent de constante de constante	lotal, treatment train 2		•	
Primary and secondary treatment		1	0.	1
Ozone (O ₃), minimum CI = 1 mg·min/L		5	3	0
BAF	None	0	0	0
Primary and secondary treatment Ozone (O ₃), minimum CT = 1 mg•min/L BAF MF RO UV (no AOP)	Daily pressure decay testing	0	4.0	4.0
RO	Online TOC	1.5	1.5	1.5
UV (no AOP)	Intensity sensors	6	6	6
Total, treatment train 2		12.5	10.5	7.5
	Total, treatment train 3		-	
Primary and secondary treatment	No existing method	1	0.	1
Ozone (O ₃), minimum CT = 1 mg·min/L	Online O ₃ '	5	3	0
BAF	None	0	0	0
UF	Twice daily pressure decay testing	1	4	4
UV AOP	Intensity sensors	6	6	6
ESB with free Cl ₂ , CT = 900 mg•min/L	Online Cl ₂	6	3	0
Total, treatment train 3		18	16	10

MEASURES TO IMPROVE PERFORMANCE AND ENHANCE RELIABILITY OF EXISTING AND NEW WWTPs

Measure	Effect of each measure
Proper assessment of impacts of water conservation	Efficiency, water quality, reliability
Enhanced preliminary treatment	Efficiency, reliability
Influent flow and load equalization	Efficiency, water quality, reliability
Enhanced primary treatment	Efficiency, water quality, reliability
Modify biological treatment process operational mode	Water quality, reliability
Implementation of new biological treatment process(es)	Water quality, reliability
Return flow equalization	Water quality
Return flow equalization and treatment	Water quality, reliability
Elimination of untreated return flows	Water quality, reliability
Divided treatment	Water quality, reliability
Effluent filtration and disinfection	Water quality, reliability
Improved process monitoring	Water quality, reliability

Water Environment

Ultimately, direct (and indirect) potable reuse is inevitable in urban and other areas and will represent an essential element of a sustainable water future

- Must think of wastewater differently
- Technology is not an issue
- The public is supportive
- To make it a reality, bold new planning must begin now!!

Water Environ

	Strin	gency	of
Type of Use of Recycled Water	Regulation		
Agriculture, Non-Food Crops (fodder, fiber, seed crops)	Least Stringer		nt
Construction uses (soil compaction, dust control)			
Environmental reuse (wetlands, streamflow augmentation)			
Processed Food Crops (Commercial Processing to Destroy Pathogens)			
Industrial Reuse (Cooling Towers)			
Aquaculture			
Agricultural Irrigation of Food Crops with No Direct Contact			
Restricted Recreational Impoundments (Boating, Fishing)			
Restricted Urban Irrigation (Golf Courses, Roadway Medians)			
Unrestricted Urban Irrigation (Parks, Playgrounds, Residential)	$\overline{}$		
Unrestricted Urban Impoundments (Full-Body Contact)			
Agricultural Irrigation of Food Crops Eaten Raw with Direct Contact		\checkmark	
Potable Reuse	Most	Stringer	nt
	Wa	ter Environme ederation	ent

Non-Potable Uses of Recycled Water

- Irrigation
- Supply for Ponds, Pools, Fountains
- Cooling, Air Conditioning
- Toilet Flushing, Priming Drain Traps
- Commercial Laundries
- Construction Water Uses
- Industrial Boiler Feed

- Car Washing
- Fire Fighting
- Mixing Concrete
- Dust Control
- Street Cleaning
- Snow Making
- Flushing Sanitary Sewers

Water Environ

CEC (Eurofins 96) list ok - nothing

target) except 1,4-dioxane

approaching our action level (10% of

• TOC remaining below 4 mg/L TOC through nearly 2 years of operation

Water Envir

70

•

3/21/2019

