CA State Water Board Grant on Water Reuse: Introduction

Thursday, November 7, 2019 1:00 – 2:30 pm ET

1

Today's Speakers

Julie Minton *The Water Research Foundation*

Adam Olivieri, Ph.D. *EOA, Inc.*

Jim Crook, Ph.D., PE Environmental Engineering Consultant

Shane Trussell, Ph.D., P.E., BCEE Trussell Technologies

Brian Pecson, Ph.D., PE *Trussell Technologies*

Jean Debroux, Ph.D. Kennedy Jenks

Agenda

- Welcome and Introduction
- Background of CA State Board and WRF Grant Investigations
 Julie Minton and Dr. Adam Olivieri
- Pathogen Monitoring in Raw Wastewater

Dr. Brian Pecson

- Plant Reliability and Quantitative Microbial Risk Assessment
 Dr. Brian Pecson
- Identification and Control of Chemical Peaks
 Dr. Jean Debroux and Dr. Shane Trussell
- Q&A

SWB Grant 1: 5 DPR Research Projects

Public Health Protection

Research addressing Pathogens

- DPR-1. Quantitative Microbial Risk Assessment*
- DPR-2. Measure Pathogens in Wastewater*
- DPR-3. Collecting Pathogens in Wastewater During Outbreaks

Research addressing Chemicals

- DPR-4. Treatment for Averaging Potential Chemical Peaks
- DPR-5. Low Molecular Weight Unknown Compounds

Research implementation late 2018 - late 2020

*Co-funded by Metropolitan Water District

7

SWB Grant 1: Research Oversight & Communication **Coordinating Committee** Oversees the program and each project **CA SWB DDW** Adam Olivieri (EOA) James Crook (Environmental Engineering Consultant) Bob Brownwood Bob Brownwood, DDW WRF · Claire Waggoner, DWO Julie Minton, Project Director **Technical Working Group (TWG)** Scientific experts overseeing the research Develop Request for Proposals (if needed) Select Research Teams Conduct the work when no RFP DDW Technical Liaison WRF Project Manage Jing-Tying Chao and Project Advisory Committee Research Team Scientific engineers, experts, etc. conducting the work Water Environment Federation

Background of CA State Board and WRF Grant Investigations

Dr. Adam Olivieri

9

California's Big Question

Is it <u>feasible</u> to do potable reuse without an environmental buffer (DPR)?

State of California Expert Panel on DPR

>>> QUESTION: Can we do DPR <u>safely</u>?

Expert Panel Findings on Direct Potable Reuse

- CA State Expert Panel assessed DPR feasibility
- Concluded it is feasible to create uniform regulations for DPR
- Expert Panel recommended 6 topics for further research

11

State Water Board Conclusions on DPR

- DDW concurred on feasibility of DPR
- More information on research topics needed before regulations could be written

"The use of recycled water for DPR has great potential but it presents very real scientific and technical challenges that must be addressed to ensure the public's health is reliably protected at all times." - SWRCB 2016

AB 574 requires DPR regulations by 2023

DPR-1 Plant Reliability and Quantitative Microbial Risk Assessment

&

DPR-2 Pathogen Monitoring in Raw Wastewater

Dr. Brian Pecson

17

DPR Pathogen Risk and Treatment

DPR Pathogen Risk and Treatment **Pathogen** High DPR-2: Pathogen 10⁵ Concentrations Monitoring Raw wastewater Pathogen Concentration **Treatment** 10-log 11-log 12-log DPR-1: Requirements Implementation of Probabilistic **Treatment Train** Performance and Drinking water **QMRA Risk** 10-5 Very Low

DPR-1 TWG and Research Team

Technical Working Group

Nick Ashbolt University of Alberta

Charles Haas Drexel University

Brian Pecson (chair) Trussell Technologies

Theresa Slifko Metropolitan Water District

Research Team

Water Environment Federation

Dan Gerrity

Edmund Seto
University of Washington

29

TWG is not developing DPR treatment criteria...

"So what's this? I asked for a hammer!
A hammer! This is a crescent wrench! ...
Well, maybe it's a hammer....
Damn these stone tools."

- Development of guidelines for evaluating DPR facility treatment performance (Goal #1)
- Use of QMRA to assess the level of treatment needed to achieve risk-based targets (Goal #2)
- TWG and Research Team are developing **tools**
- The tools provide DDW with a consistent approach vetted by a team of experts

Steps in QMRA

1. Exposure Assessment

2. Dose-Response

Raw
Wastewater

Treatment

Drinking water levels

Drinking water consumption

Drinking water consumption

Exposure

Drinking water consumption

Drinking water consumption

Drinking water consumption

32

Water Environment Federation the water quality people'

Steps in QMRA

1. Exposure Assessment

Dose-Response

Treatment

Drinking water levels

Dose-Response

Characterization

Risk

Risk

Water Environment

Reverse Consumption

The water capity people

Risk

Multiple Decision Points in the Process 3. Risk 2. Dose-Response Characterization 1. Exposure Assessment Drinking water Exposure Dose-response **Treatment** levels consumption How do we quantify performance? 0.75 Use surrogates or direct pathogen measurements? What data should we use? 0.25 Should we use site-specific performance distributions? Ranges from the literature? What frequency of data collection?

Multiple Decision Points in the Process 3. Risk 2. Dose-Response Characterization 1. Exposure Assessment Treatment Drinking water **Drinking water** Dose-response wastewater levels consumption How much water do people drink? Estimate with a distribution? Which one? Use a point estimate? Which one? Does it matter? How much does it matter? Water Environment Federation

Multiple Decision Points in the Process

1. Exposure Assessment

2. Dose-Response
Characterization

Treatment Drinking water levels

Drinking water consumption

Dose-response
Which D-R functions to use?
What about molecular data?

Task 1: Literature Review – Major Sections

- Raw wastewater pathogen concentrations
- Treatment Train Performance
- QMRA
- Linking Performance and QMRA
- General approach:
 - Provide discussion on the topic
 - Give TWG recommendation on how to proceed

43

Task 1: Literature Review – Major Sections

Raw wastewater pathogen concentrations

Which pathogens?

Pathogen / Indicator	Enumeration	Method
Enterovirus	Culture and molecular	EPA 1615
Adenovirus	Culture and molecular	Rigotto et al. (2011) and Ko et al. (2005)
Norovirus	Molecular	EPA 1615
Male-specific coliphages	Culture and molecular	EPA 1601 and 1602
Giardia cysts	Microscopy	EPA 1693
Cryptosporidium oocysts	Microscopy	EPA 1693

Which enumeration methods?

Task 1: Specifications and Scope of Work

July 2019

August 2019

51

Remaining Project Schedule

• Task 2: Develop Performance and QMRA Tools

Draft PATTP and QMRA tools
 Final PATTP and QMRA tools
 April 2020
 June 2020

• Training workshop with State Board June 2020

• Task 3: Final Report Fall 2020

Importance of Research for DPR

- We set risk-based goals for drinking water
- DPR should provide the same level of protection
- Tools allow DDW to quantify public health protection provided by different treatment requirements
- Informs DPR regulations by providing insight into treatment criteria

55

Study Background: CA DDW Expert Panel Report

"The State Water Board will work...to include monitoring requirements for pathogens in the raw wastewater feeding potable reuse systems, using improved methods that allow for better characterization and improved precision of concentrations of pathogens, to provide more complete information on concentrations and their variability"

(DDW, 2016)

DEVELOPING DIMPTORM NATION RECOVERING CRITERIA
FOR DIRECT POTABLE REUSE

STATE WATER RESOURCES CONTROL BOARD
Report to the Lepistance
December 2016

In Compilance with Water Code Section 13563

ETATE OF CANTONIA
General Control
CALIFORNIA FOR THE POTE FRONT ABOVEY
Manual Formation Control
CALIFORNIA FOR THE POTE FRONT ABOVEY
Manual Formation Control
CALIFORNIA FOR THE POTE FRONT ABOVEY
Manual Formation Control
CALIFORNIA FOR THE POTE FRONT ABOVEY
Manual Formation Control
CALIFORNIA FOR THE POTE FRONT ABOVE
FOR THE P

57

Pathogen Monitoring TWG and Project Goals

Technical Working Group

George DiGiovanni Metropolitan Water District

Menu Leddy

Kara Nelson

Brian Pecson
Trussell Technologies

Channah Rock
University of Arizona

Theresa Slifko (chair)

Metropolitan Water

District

Goals:

- Develop recommendations for the collection and analysis of pathogen data in raw wastewater
- Conduct pathogen monitoring of raw wastewater as inputs to DPR-1

Review of DPR-2 Scope

- Scope
 - Task 1: Literature and methods review
 - Task 2: Develop monitoring plan and RFQ
 - Task 3: Conduct pathogen monitoring campaign
 - Task 4: Data analysis and preparation of guidance

59

Task 1 – Literature and Methods Review

TWG Recommendations for Pathogens and Enumeration Methods

Virus

Enterovirus (culture and molecular) Adenovirus (culture and molecular) Norovirus (molecular) Protozoa

Giardia (microscopy)
Cryptosporidium (microscopy)

- Bacteriophage (culture and molecular)
- Includes additional viral pathogens and indicators

Includes historical drinking water and IPR pathogens

• Uses both traditional (non-molecular) and molecular enumeration methods

Task 1 – Literature and Methods Review

- Completed literature review to support sampling plan and RFP
- Industry needs more pathogen data
 - Current "standard": Rose et al. 2004
 - Six facilities with 5-6 samples
 - · Mostly small utilities outside CA

61

Task 1 – Literature and Methods Review

- Completed literature review to support sampling plan and RFP
- Industry needs **more** pathogen data
 - Current "standard": Rose et al. 2004
 - Six facilities with 5-6 samples
 - · Mostly small utilities outside CA
 - IPR's 12/10/10 based on highest concentrations in the literature

Industry needs high quality pathogen data

• Drinking water methods pose challenges for wastewater matrices

63

Industry needs high quality pathogen data

• Previous studies have not reported recoveries

Giardia counted: 2
Colorseed counted: 1
Colorseed added: 10
Recovery percentage: 10%

Actual Giardia in sample: 2 x 10 = 20

• QA/QC is important for high-quality data

Task 2 — Methods Pre-Testing: Cryptosporidium

Concentration Sample Volume 1 mL

Filtration 2 mL

Centrifugation 4 mL

-

Task 2 – Methods Pre-Testing: Cryptosporidium Concentration Pellet Volume Sample Volume Concentration (oocysts/L) Step 1 mL ND (<10-12) 100 mL Filtration Also suitable for Giardia cysts ND 2 mL (<3-6)Corrected Average 500 mL Conc. Recovery (oocysts/L) Site 1 5-9 26% 6-18 Centrifugation Site 2 4 mL 18-32 30% 40-55 1000 mL

Task 2 –RFQ and Selection of Laboratories

Lead lab

Methods Development Lab

73

Next Steps

- Task 3: Conduct pathogen monitoring campaign
 - Methods optimization for 5 wastewaters
 - Demonstration of capability

Walt Jakubowski QA/QC

- Full-scale campaign until January 2021 including two winters
- Task 4: Analyze data and develop recommendations

75

Importance of Research for DPR

- Raw wastewater pathogen concentrations a key input for evaluations of DPR in California
- Industry does not have sufficient high-quality pathogen data for regulatory development
- New SOPs will address the limitations of previous monitoring efforts
- Provides industry with the largest dataset of raw pathogen concentrations
- Data from DPR-2 will feed into evaluation in DPR-1 (Treatment and QMRA)

DPR-4 Identification and Control of Chemical Peaks

Drs. Jean Debroux and Shane Trussell

77

DPR-4: Treatment for Averaging Potential Chemical Peaks

- Full advanced treatment (MF/RO/UV-AOP) is a highly effective treatment train employed today for groundwater recharge
- Water quality excursions have been observed

Water Environment Federation the water quality people*

Project Scope

- Task 1 Literature Review
- Task 2 Case Study Report
- Task 3 Experimentation to Address Knowledge Gaps

Project Schedule

Project Initiation

Task 1 – Literature Review

Task 2 – Case Study Report

Task 3 – Experimentation

Final Report

December 1, 2018 May 31, 2019

July 31, 2019

January 31, 2020

March 31, 2020

_____ 79 Water Environment Federation

What is a chemical peak?

- Diurnal and process-related TOC baseline variations
- Outliers

Defining a chemical peak

- Peak height must exceed baseline threshold
 - Due to outliers, non-normal distribution
 - All data used
 - Baseline Threshold = Q3 + 1.5 * IQR, where IQR = Q3-Q1
- Peak width Due to non-plug flow processes and recycle flows in WWTP, an instantaneous illicit discharge results in a peak width of hours to days
 - On-line data every 15 minutes

81

What chemicals can pass through FAT?

Summary of RO rejection of organic compounds and chemical families

Chemical Family	Sub-group	Good (>90%)	Intermediate (50-90%)	Poor (<50%)
VOCs	Solvents and Industrial Compounds	Ethers	Halobenzenes; 1,1,2-TCE	Nitriles; Haloalkenes
	Haloalkanes	CCl ₄ ; Ethanes with 3-4 Cl atoms; Most C ₄₊ haloalkanes	Some C ₁ -C ₃ haloalkanes	C ₁ -C ₂ haloalkanes with 1-2 halogen atoms
	Alkylbenzenes	C ₁₀₊	C ₆ -C ₉	
	Pesticides/ Herbicides	1,2,3-TCP		MITC
LMW Oxygenated Compounds	Alcohols	Branched C ₄₊ alcohols	Isopropyl alcohol; Most unbranched alcohols	Methanol; Ethanol;
	Aldehydes, Ketones	Methyl isobutyl ketone (MIBK)	Acetone; Most Ketones	Formaldehyde; Most Aldehydes
PPCPs	Flame Retardants	Chlorophosphates; PFAS		
	Pharmaceuticals	Steroids; β-blockers; NSAIDs; X-ray Contrast Media		
DBPs	Nitrosamines	C ₄₊ nitrosamines; NMOR	NDMA; NDEA	
	Halogenated DBPs	HAAs	HANs	THMs

References: Howe 2019, Zeng 2016, Rodriguez 2011, Snyder 2007, Kiso 2011, Tackaert 2019, Fujioka 2012; Doederer 2014

83

Predicted removal of organic compounds via AOP

Family	Greater than 1,4-dioxane	Less than 1,4-dioxane
	Haloalkenes	C ₁ -C ₃ Haloalkanes
	Halobenzenes	C ₁ -C ₃ Alcohols
	Alkylbenzenes	C ₁ -C ₃ Aldehydes
VOCs	C ₄ + Alcohols	C ₃ -C ₅ Ketones
	C ₄ + Aldehydes	Acetonitrile
	C ₆ + Ketones	MITC
	Acrylonitrile	
PPCPs	Most pharmaceuticals	Flame Retardants
DBPs	Nitrosamines ¹	THMs

Notes: 1. High removal in UV/AOP systems References: Drewes 2008, Howe 2019, Ahmed 2017, Drewes 2006, Buxton 1988,

Organic compounds poorly removed by FAT

Family	Compounds poorly removed by FAT		
VOCs	LMW haloalkanes LMW alcohols, aldehydes, ketones Acetonitrile MITC		
DBPs	THMs		

Water Research

84

Water Environment Federation the water quality people'

Additional RO/AOP Treatment

Water Environment Federation the water quality people*

85

Case Studies

- Compare elements of source control measures, experiences, monitoring and detection of chemical peaks
 - Orange County Water District Ground Water Replenishment System
 - Singapore Public Utilities Board
 - City of San Diego North City Pure Water Demonstration Facility
- Compare strategies for averaging Chemical Peaks

- -

Singapore PUB

List of Prohibited Organic Compounds (PUB)							
1,2,4-Trimethylbenzene	Furan	Octane					
1,1,1-Trichloroethane	Heptane	Polybrominated diphenyl ether					
1,1,2-Trichloroethane	Hexane	Styrene					
Benzene	Isobutanol	Tetra-chloromethane					
Decane	Isopropyl ether	Tetra-chloroethylene					
Diethyl ether	Methyl ethyl ketone	THF (Tetrahydrofuran)					
Dimethyl sulphide	Methyl isobutyl ketone	Toluene					
Dimethyl sulphoxide	Methyl tert-butyl-ether	Trichloroethylene					
DMF (N,N-Dimethylformamide)	Methylene chloride	Turpentine					
Ethylbenzene	Nonane	Xylene (o,m,p)					

San Diego Pure Water Demonstration Facility Chemical Challenge Testing

- Spike of Acetone, NDMA, Formaldehyde, and 1,4-dioxane into Feed Water
- Evaluate O₃ & BAC as additional barrier
- Test removal of O_3 -BAC-MF-RO-UV/AOP vs. MF-RO-UV/AOP

How will online TOC analyzers be used?

- Advanced oxidation reactions to mineralize organic carbon in sample (UV/persulfate and O₃/hydroxide)
- Expert panel expressed concern that highly volatile organics might not be captured with online TOC

99

Experimental matrix

Principal Investigator Eric Dickenson, PhD, PE

*OH rate constant	Henry's Law Constant (Hyc)			
(k _{*OH} , L/Mol*s)	HYC > 1.0	0.1 < HYC < 1.0	0.01 < HYC < 0.1	
k _{*OH} >1 x 10 ⁹	Vinyl chloride	Toluene	MIBK	
1x 10 ⁸ < k _{*OH} < 1x10 ⁹			Acetone	
1x 10 ⁷ < k _{*OH} < 1 x 10 ⁸		Methylene chloride		

DPR-4:Treatment for Averaging Potential Chemical Peaks

Thank you to:

Research Team: Stephen Timko, PhD, Rodrigo

Tackaert, PhD, Aleks Pisarenko, PhD

TWG: Jim Crook, PhD and Adam Olivieri, Dr. PH

PAC: Mehul Patel, PE

Guidance: SWRCB, Water Research Foundation,

California DDW

