Ozone Applications at Inland Locations for Potable Reuse

Wednesday December 13, 2017 1:00 – 2:30 p.m. EDT

How to Participate Today

- Audio Modes
 - Listen using Mic & Speakers
 - Or, select "Use Telephone" and dial the conference (please remember long distance phone charges apply).
- Submit your questions using the Questions pane.
- A recording will be available for replay shortly after this web seminar.

Today's Moderator

Justin Mattingly WE&RF Research Manager

WE&RF and WRF Integration

- Represents the evolution of water research
 - -1,200 subscribers
 - 2,300 research studies
 - \$700M integrated research portfolio
- Launches January 1, 2018

WE&RF and WRF Integration

- A more interconnected research agenda
- Access to an expanded collection of water research
- Leverages funding
- Communicates more effectively with government partners
- Strengthens relationships with water partners
- Creates a model for collaboration across the water community

Today's Speakers

Vijay Sundaram, P.E. Regional Practice Leader, Water Sustainability Stantec

Denise Funk
Division Director, Research and
Development at Gwinnett County
Department of Water Resources

Ozone-BAC Technology Development and Demonstration in Reno Nevada

Vijay Sundaram, PE^{1,2}

¹Regional Practice Leader, Water Sustainability, Stantec

²PhD Candidate, University of Nevada, Reno

Potable Reuse Drivers

- Water scarcity
- Single-pipe system
- No cross connection concerns
- Allows for "One Water" management strategy
- Maximum utilization of the water resource

https://www.e-wef.org/Store/ProductDetails.aspx?productId=58436417

Northern Nevada Potable Reuse Initiative

2007 - 2010

- Ozone-BAC technology development
- · 20-month continuous field testing
- Findings presentation to Nevada Division of Environmental Protection (NDEP)

2015 - Present

- WE&RF 15-10 Ozone-BAC technology optimization project underway in South Truckee Meadows Water Reclamation Facility in Reno
- State of Nevada approved IPR regulations (December 2016)
- Advanced Water Treatment Technologies Demonstration Project Ongoing Regional IPR Feasibility Study

Ozone Pros & Cons

Pros

- CEC and Refractory Organics Oxidation
- Virus Inactivation
- DO Replenishment
- Taste, Odor, & Color Improvement

Cons

- Bromate Formation Potential
- Biodegradable Organic Byproducts Formation
- NDMA Generation Potential
- Incomplete Flame Retardant Removal

Reno-Stead WRF Ozone-BAC Pilot Testing

Reno-Stead Ozone-BAC Pilot Testing • WWTP Site: Reno-Stead WRF (RSWRF) - Average flowrate = 1.5 Mgal/d - Mean cell residence time (MCRT) = 17 to 25 days - Average bromide = 240 μg/L - Average TDS = 350 mg/L • Ozone-BAC Continuous Operation - Pretreatment: • Membrane Filtered (MF) Effluent (10 months) • Sand Filtered (SF) Effluent (5 months) - Flowrate = 10.7 gpm; BAC Empty Bed Contact Time (EBCT) = 30 minutes

Ozone Disinfection Performance

Ozonation of Membrane Filtered Effluent

Sample Location	Fecal Coliform (MPN/100 mL)	Total Coliform (MPN/100 mL)	MS2 (pfu/100 mL)		
Secondary Effluent	>2400	>2400	Not Measured		
Membrane Effluent	<0.9	<0.9	1.1 X 10 ⁸		
After Ozonation with	<0.9	-0.0	1- 6 X 10º		
5 mg/L O ₃ & 3.5 mg/L H ₂ O ₂	<0.9	<0.9			

Ozonation of Sand Filtered Effluent

Sample Location	Fecal Coliform (MPN/100 mL)	Total Coliform (MPN/100 mL)
Secondary Effluent	>2400	>2400
Sand Filtered Effluent	>2400	>2400
After Ozonation with 5 mg/L O ₃ & 3.5 mg/L H ₂ O ₂	2-5	140 – 280*

* Of concern in some effluent uses and regulatory jurisdictions.

Reno-Stead WRF WE&RF 15-10 Regional Project

Group	Constituents	Units	Secondary Clarifier Effluent	Membrane Filter Effluent	Ozonation Effluent	BAC Effluent	Blank
Hormones	Estradiol	ng/l	5.9	3.4	1.9	1.8	2
	Estrone	ng/l	65	11.9	0.52	0.5	0.5
	Gemfibrozil	ng/l	45.7	35.3	0.2	0.2	< 0.080
	Ibuprofen	ng/l	4.4	6.4	< 0.39	< 0.39	< 0.39
	Naproxen	ng/l	20.5	17.9	< 0.25	< 0.25	< 0.25
	Triclosan	ng/l	54.7	2.2	< 1.2	< 1.2	< 1.2
	Diazepam	ng/l	2.7	2.8	0.18	< 0.14	< 0.14
	Fluoxetine	ng/l	3.2	2.4	2	< 0.080	< 0.080
	Primidone	ng/l	140	129	4.6	< 0.6	< 0.6
	Trimethoprim Atorvastatin	ng/l	270 14.3	130 5.5	< 2.4 < 0.11	< 2.4	< 2.4
	Azithromycin	ng/l	323	102	< 0.11	< 0.11	< 0.11
	Caffeine	ng/l	25	10.8	< 0.042	< 0.042	< 0.042
Pharmaceuticals	Ciprofloxacin	ng/l	363	247	< 14	< 14	< 14
Filannaceuticais	Cotinine	ng/l	54.5	20.5	14	2.3	0.49
	Meprobamate	ng/l	385	343	43.5	3	< 1
	Sulfamethoxazole	ng/I	930	833	6.0	< 0.25	< 0.25
	Methadone	ng/l	65.3	33	0.3	0.13	< 0.4
	Atenolol	ng/l	953	890	10.6	< 1	< 1
	Carbamazepine	ng/l	258	247	0.98	0.8	0.8
	Dilantin	ng/l	253	150	3.1	< 1	< 1
	Diclofenac	ng/I	96	109	< 0.5	< 0.5	< 0.5
	Amoxicillin	ng/l	1633	1020	0.74	ND.	ND
1	Phenytoin	ng/l	390	343	3.9	ND	ND
	Salicylic Acid	ng/I	25	32.67	28	20.67	48.67
	TCEP	ng/l	620	545	445	< 3.4	< 3.4
Flame Retardants	TCPP	ng/l	2100	2400	1400	< 2.7	< 2.7
	TDCPP	ng/l	633	623	627	0.695	3.23
	Bisphenol A	ng/I	18	22	< 0.27	< 0.27	2200
Industrial EDCs	Octylphenol	ng/l	31	< 25	< 25	< 25	< 25
industrial EDCs	Nonylphenol monoethoxylate	ug/I	1.1	0.87	< 0.87	< 0.87	< 0.87
71	DEET	ng/l	115	125	2.56	< 0.60	1.2
	Musk Ketone	ng/l	47	38	< 25	< 25	< 25
Organics	ВНА	ng/l	76	42	< 1	< 1	< 1
Organics .	Atrazine	ng/l	1.3	1.5	0.5	< 0.25	< 0.25
	Benzophenone	ng/l	203	173	< 50	< 50	< 50
-:	1,4-Dioxane	ug/l	1.53	1.5	0.3	0.4	< 0.13
	Formaldehyde	ug/I	9.2	9.8	133.3	5.8	2.4
1	Acetaldehyde	ug/I	3.5	2.1	31.0	< 1	< 1
Ozone Byproducts	Ethyl Glyoxal	ug/l	3.3	3.1	41.3	3.9	< 1.1
Cashe Byproducts	Methyl Glyoxal	ug/l	3.3	3.4	27.0	3.7	< 0.5
	Propanal	ug/l	<0.7	<0.7	3.5	< 0.7	< 0.7
	NDMA	ng/l	1	0.9	7.9	< 0.28	0.385

WE&RF 15-10 Optimization of Ozone-BAC Processes for Potable Reuse Applications

- · Zia Bukhari, PhD
- Ruth Marfil-Vega, PhD
- Patrick Jjemba, PhD
- Matt Surmeier

Reno Regional Agency Team

- Lydia Peri, Washoe County
- Rick Warner, PE, Washoe County

- Vijay Sundaram, PE
- Jeff Curtis, PhD

- Stefani McGregor
- Project Advisory Committee

David Foster

WE&RF 15-10 Project Objectives

- Monitor DBPs and FP in Ozone-BAC and RO effluents
 - Establish baselines for Total Trihalomethanes (TTHMs), Haloacetic Acids (HAAs), nitrosamines and their precursors in the effluents
 - Determine relationship between TOC level and DBP FP
- 2. Optimize Ozone-BAC in pilot scale
- 3. Develop a guidance manual for the potable reuse industry on design and operational optimization of Ozone-BAC systems

Reno-Stead WRF WE&RF 15-10 Regional Project

Full-Scale Monitoring Age, years **Facility ID** Sample ID System Type (at start of monitoring) BAC 1 GAC Media - 9.0 BAC 1 Ozone-BAC BAC 2 BAC 2 Ozone-BAC GAC Media - 1.1 BAC GAC Media - 2.7 BAC 3A BAC 3B **BAC** GAC Media - 2.3 BAC 3 GAC Media - 2.3 BAC 3C Ozone-BAC BAC 3D Ozone-BAC GAC Media - 0.0 RO 1 RO 1 (O3+MF) RO RO Membrane - 2.3 **RO 2** RO₂ (MF) RO RO Membrane - 2.8 Water Environment Federation the water quality people* WE&RF 15-10

Truckee Meadows Advanced Technology Demonstration Project

University of Nevada, Reno

Vijay Sundaram, Laura Haak, Lydia Peri, and Krishna Pagilla

Rick Warner and Lydia Peri, Washoe County; Dave Kershaw and Keri Lanza, City of Reno; Andy Hummel, City of Sparks; John Enloe, Truckee Meadows Water Authority; Michael Drinkwater, Truckee Meadows Water Reclamation Facility; Jim Smitherman, Northern Nevada Water Planning Commission

Independent Advisory Panel (IAP)

Led by NWRI

Truckee Meadows Advanced Technology Demonstration Project

- Demonstrate the feasibility of IPR in Nevada based on Nevada IPR Regulations
- Two IPR Methodologies:
 - Spreading Basin
 - Injection Well

Residual Disinfectant (if needed) Spreading

Vadose Zone/Soil Aquifer Treatment

Saturated Zone Travel Time

Ozone-BAC **UV** Disinfection Effluent Polishing Residual Disinfectant (if needed) Injection Saturated Zone Travel Time

Both Spreading Basin and Injection Well Project trains achieve Category A+ **Effluent Pathogen Log Reduction Requirements**

Regional Project

Present State-of-the-Art

- Ozone-BAC is effective at removing CECs
- Effluent TOC and its characteristics correlate with regulated DBP formation potential
- Ozonation provides significant NDMA precursor removal
- BAC EBCT is an important design parameter
- Ozone-BAC treatment is currently being implemented in various inland locations, concurrent with ongoing optimization research

Demonstration of Direct Potable Reuse Using Multi-Stage Ozone-Biological Filtration (BAF)

Denise Funk¹, PE, BCEE Jennifer Hooper², PE Kati Bell³, PhD, PE, BCEE Eddie Machek⁴

¹Gwinnett County Water Resources

²CDM Smith

³Stantec

⁴PhD student, Georgia Tech

Presentation Overview

- Background on Gwinnett County
- Research Objectives
- Pilot Plants
- Select Results
- Next Steps

Why Study Direct Potable Reuse?

- Diversify water supply and resiliency
- Compare DPR to current IPR practice
- Advance the science of Ozone-Biofiltration as an alternative to Reverse Osmosis (RO) based treatment

Pilot Plant Controls, Chemicals and Instruments

Pilot Operational Phases

Phase	Duration	Objectives/Conditions
Baseline	1-2 months	 Characterize with 100% Lake Lanier influent Compare performance with full scale operations Acclimate biofilters
DPR Testing of Blending Ratios	5-6 months	 Test blending ratios 15, 25, 50, and 100% F. Wayne Hill effluent
Robustness	1-2 months	 Autumn lake water quality challenges Characterize performance over process challenges (e.g. loading rate fluctuation, extended filter run time)

Pilot Analytical Matrix

	Baseline						
Parameter		Ozone Effluent	Coag/Flocc Effluent	Biofilter Effluent	Biofilter Media	Finished Water	Backwash Water
Biological Indicators	•		•	•	•	•	
Organic Characteristics	•	•	•	•		•	
Trace Chemical Constituents	•					•	
DBPs/DBP-FP	•	•		•		•	
General Water Quality	•	•	•	•		•	•
Inorganic Chemicals						•	
Operational Parameters	•	•	•	•	•	•	•

Sampling Events

6 laboratories

+

70 analytical methods

+

290 analytes

=

Lots of sample bottles

Results – Drinking Water Standards

- 15% Blend met all primary and secondary standards evaluated
- 25% Blend exceptions
 - Cyanide (one sample 0.29 mg/L)
 - NDMA (one sample 14 ng/L above CA/MA action level)
- 50% Blend exceptions
 - Nitrate
 - Bromate (one sample 13 μg/L)
 - Di (2-ethylhexyl) phthalate (one sample 8 μg/L)
 - Color (during robustness only)
 - Manganese (one sample 0.06 mg/L)
 - NDMA (one sample 11 ng/L above CA/MA action level)

Results - Continued

- 100% FWH exceptions
 - Nitrate
 - Bromate (one sample 11 μg/L)
 - Cyanide (one sample 0.27 mg/L)
- ALL BLENDS
 - HAA5 (< 22 μg/L)
 - TTHMs (< 13 μg/L)
 - Biological parameters all below detection limits (total coliform, fecal coliform, coliphage (somatic and male-specific/F+-specific coliphage, MS2), enterococcus, Legionella, Cryptosporidium, and Giardia)

Next Steps for Gwinnett County

- WERF Project 15-11
 - Draft Report submitted Nov 7, 2017
 - Final Report mid-2018
- Ongoing research projects to optimize service in all areas
- Water Innovation Center

Acknowledgements

- Project Team
 - Denise Funk, PE, BCEE (PI)
 - Dr. Kati Bell, PE, BCEE (co-PI)
 - Jen Hooper, PE (co-PI)
 - Dr. Ben Stanford
 - Dr. Ching-Hua Huang
 - Eddie Machek
 - Georgia Tech co-ops and interns
 - Morayo Noibi
- Water Environment & Reuse Foundation
 - Justin Mattingly

- Alex Mofidi

HAZEN AND SAWYER

• Project Advisory Committee

- Dr. Chance Lauderdale

- Brian Bernados

- Kelly Comstock

- Dr. Dan Gerrity

Questions?

gwinnett county GOVERNMENT

Water Environment Federation the water quality people*

Thank You