

Water Research

Today's Moderator

Christine Radke, PMP Research Program Director *The Water Research Foundation*

Agenda

lime	Presentation	Speakers
12:00 pm	Welcome and Introductions	Steven Massa, WEF Christine Radke, WRF
12:05 pm	National Science Foundation's GOALI Projects and MOU with the Water Research Foundation	Karl Rockne, NSF
12:15 pm	Bioaugmentation of activated sludge with high activity nitrifying granules/flocs: population selection, survival, biokinetics (TIRR3C15)	David Stensel and Mari Winkler, University of Washington
12:45 pm	Advancing the oxygenic photogranule process for energy positive wastewater treatment (TIRR4C15)	Chul Park, University of Massachusetts-Amherst
1:15 pm	Biofilm-enhanced anaerobic membrane bioreactor for low temperature domestic wastewater treatment (TIRR5C15)	Steven Skerlos, Lut Raskin, and Tim Fairley, <i>University of Michigan</i>
1:45 pm	Q&A	All
2:00 pm	Adjourn	

National Science Foundation and WRF's Co-Funded Research

Karl Rockne, Ph.D., PE, BCEE Program Director Environmental Engineer Program Division of Chemical, Bioengineering, Environmental and Transport Systems National Science Foundation

5

H. David Stensel, Ph.D., PE, BCEE, WEF Fellow Professor Emeritus Civil & Environmental Engineering University of Washington

Water Environment Federation the water quality people"

Mari Winkler, Ph.D. Assistant Professor Civil & Environmental Engineering University of Washington

Water Research

Nitrogen Removal Performance (June - September, 2018)

Parameter	Units	June	July	Aug.	Sept.
Inorganic N removal	%	71.8	84.2	93.3	90.7
NH3-N Oxidized	%	78.9	98.5	97.9	96.5
SND	%	91.5	85.2	94.4	93.3
COD:N-removed ratio	gCOD/gN	3.5	3.5	3.7	3.7
Assumed 0.024 gN/gCOD f	for biomass	synthesis	s instead	1 of NO	3 reduc
Indicated by low COD:N ra	itio and lo	w efflue	ent NO3	3-N.	5 reduc
For acetate: NO3-N reduction COD:N is	6.0 – 6.5	g/g			

NO2-N reduction COD:N is about 3.6 - 3.9 g/g

Water Environment

Water Research

PhD student: Bao Nguyen Quoc University of Washington

Water Environment Federation the water quality people"

Dr. Dave Stahl

Water Research

Water Research

Advancing the oxygenic photogranule process for energy positive wastewater treatment

Chul Park, Ph.D. Associate Professor and Graduate Program Director Department of Civil & Environmental Engineering University of Massachusetts - Amherst

Synopsis

Water Environment Federation

- Phototrophic granules (photogranules) can be generated from transformation of activated sludge under hydrostatic conditions
- Oxygenic photogranules (OPG) can treat wastewater without aeration
- The oxygenic photogranule (OPG) process can recover chemical energy in wastewater
- Need to advance the development of the OPG process for real-world application

-	Plant location	Biological Process (CAS* or BNR**)	Aeration basin configuration (covered or open basin)	Solids retention time (SRT)	Incubation start date	First day of compaction & aggregation/ green biomass	First appearance of a biogranule	Ma biogr
-	Amherst, MA, USA	BNR, occasionally CAS	Open	10-15 days	11-Dec-14	3/5	10	
	Hadley, MA, USA	CAS	Open	10 days	18-Nov-14	2/7	7	-
	Springfield, MA, USA	BNR	Open	~20 days	6-May-14	2/7	30	10
	Northampton, MA, USA	BNR	Open	~10 days	6-May-14	2/7	19	
,	Deer Island- Winthrop, MA, USA	CAS- pure O ₂	Covered			3/18	21	
	Narbonne, France	BNR	Covered	>20 days	26-Feb-14	2/5	19	
	Omaisons, France	BNR	Open	>30 days	28-Jan-15	5/5	37	
	Neuchâtel, Switzerland	BNR	Covered	~5 days	19-May-14	1/7	11	
Water En Federative water of	nvironme ation ation	ent		Milfer	stedt e	et al. (20	17) Sci	Rep

- Achieved the removal of COD and nitrification without aeration!
- The OPG process shows the potential to recover chemical energy in wastewater and solar energy in the form of easily separable biomass
- The first 500 L outdoor pilot taught new lessons
 - Seeding with large dilution works
 - >Need to overcome photoinhibition, if sunlight is used

Are AnMBRs for recovery of energy from domestic wastewater a sustainable technology?
Does the design make significant progress toward an unmet and important environmental or social challenge?
No: the world has plenty of energy and global warming potential not addressed. More work to do.
Is there potential for the design to lead to undesirable consequences in its lifecycle that overshadow the environmental/social benefits?
Yes: Excess greenhouse gas (GHG) emissions
Is the design likely to be adopted and self-sustaining in the market?
The value proposition right now is mainly smaller size. Net zero energy is possible after more research. The GHG issue is of industry concern and will be a show-stopper for now.

