

Today's Moderator

Christine Radke, PMP The Water Research Foundation

Speakers

John Willis, Ph.D., PE, BCEE Brown & Caldwell

Keshab Sharma, Ph.D. University of Queensland (Australia)

Asbjorn Haaning-Nielsen, Ph.D. Aalborg University (Denmark)

Wendy Barrott, Ph.D, PE Great Lakes Water Authority (Michigan)

John Willis, Ph.D., P.E., BCEE, Brown and Caldwell

Our of Co	Our Research Suggests Sewer CH ₄ is over 5 of Centralized Scope-1 GHG												
	GHG Emissions Factor, MT CO2e/mo per m³/s US National GHG Emissions, treated 1,000 MT CO2e/yr												
	Plant Cl	assification	% of US Flow in Category	Estimated US National Flow, m ³ /s	Sewer CH₄	СН ₃ ОН СО2	Other Scope-1	Sewer CH₄	CH ₃ OH CO ₂	Other Scope-1	Sewer CH₄ as % of Scope-1		
	ENR	w/o Digestion	4.3%	47	79.4	38.6	49.7	45	22	28	47.3%		
	LINIX	w/ Digestion	7.7%	84	79.4	94.6	49.7	80	95	50	35.5%		
		ENR Totals:	12.0%	131				125	117	78	39.0%		
	BNR	w/o Digestion	17.7%	193	79.4	0.0	49.7	184	0	115	61.5%		
	Dink	w/ Digestion	31.3%	343	79.4	25.2	49.7	327	104	205	51.4%		
		BNR Totals:	49.0%	536				511	104	320	54.7%		
	Secondary	w/o Digestion	14.1%	154	79.4	0.0	49.7	146	0	92	61.5%		
		w/ Digestion	24.9%	273	79.4	0.0	49.7	260	0	163	61.5%		
	Seco	ndary Totals:	39.0%	426				406	0	254	61.5%		
	US Nat	tional Totals:	100.0%	1,094				1,042	221	653	54.4%		
Water Environm Federation the water quality peop	ment ^{xe*}											Ô	Water Research FOUNDATION

Method Development

Keshab Sharma, Ph.D. The University of Queensland - Advanced Water Management Centre

GS-Model Methodology Diurnal variation of sewer flow was assumed. A typical flow profile was used and the same profile was employed to all the pipes irrespective of their size and flow. Water depth and flow velocity in sewer pipes were estimated as a function of pipe size, flow and slope using Hazen-Williams equation. Typical domestic sewage characteristics were used. Parameters calibrated for methane production in a sewer system in Australia were employed. Same parameters were used for all the sewer pipes irrespective of their size, flow, flow velocity, and water depths.

	Monitoring Day Designation:	Summer	Summer	Summer	Winter	Winter	Winter			
	Wontoning Day Designation.	Day 1	Day 2	Day 3	Day 1	Day 2	Day 3			
	Source-1) Simple-Algorithm-Pro	edicted (CH ₄ Prod	uction w	vithin the	Modelle	ed Pl			
	Modelled Gravity Sewer CH ₄ , kg CH ₄ /D	63	62	60	38	37	38			
	Modelled Surcharged Sewer CH ₄ , kg CH ₄ /D	2.0	1.9	1.9	1.1	1.1	1.1			
	Modelled CH ₄ Production in PI, kg CH ₄ /D	64.9	64.3	62.2	38.7	38.4	39.4			
Results showed	Modelled as % of Measured	49.7 %	49.0%	47.0%	46.4%	55.6%	58.9%			
	Source-2) Estimated Transport of	CH ₄ into	the PI f	rom Oth	er-Jurisd	ictional	Sewers			
Cood Correlation	Average Dissolved CH ₄ Feed Sewers to the	0.75	0.74	0.75	0.40	0.25	0.00			
Good Correlation	PI, mg/L ^a	0.75	0.74	0.75	0.40	0.36	0.38			
	Estimated CH ₄ , Transport into the PI from		05.0		50.5	50.0				
with Temperature	Feed Sewers, kg CH₄/D	84.7	85.8	81.1	50.6	50.2	51.5			
	Transported CH₄ as % of Measured	64.9%	65.4%	61.3%	60.6%	72.7%	77.0%			
	Sink-2) Estimated Dissolved CH ₄ Discharged from the LTOAF-17-Ventilated Reac									
	Dissolved CH ₄ Concentration Leaving LTOAF-	0.111	0.110	0.100	0.005	0.000	0.004			
	17-Ventilated Section, mg/L	0.111	0.110	0.109	0.085	0.083	0.084			
	Dissolved CH ₄ Discharged from LTOAF-17-	12.6	12.0	11.0	10.7	11.6	11.6			
	Ventilated Section, kg CH ₄ /D	12.0	12.0	11.0	10.7	11.0	11.0			
	Transported CH₄ as % of Measured	9.6%	9.8%	8.9%	12.8%	16.8%	17.3%			
	Sink-1) Measured	d Data fo	or each D	ay of Sa	mpling					
	Average PI Sewage Temperature, ^o C	22.1	21.8	21.5	12.7	12.1	12.6			
	Average Measured Flow at LTOAB-17, mgd	29.9	30.8	28.7	33.3	36.9	36.2			
	Measured CH ₄ Emissions, kg CH ₄ /D	131	131	132	83	<u>69</u>	67			
	Total Accounted f	or CH ₄	to be Em	itted at l	LTOAF-1	7				
	Total Modelled + Estimated - Discharged		407		70		70			
	(Predicted) CH ₄ , kg CH ₄ /D	137	137	131	79	//	/9			
Water Environment	Total Predicted CH ₄ as % of Measured	105.0%	104.6%	99.3%	94.2%	111.5%	118.6%			
Federation' the water quality people*	Average Seasonal Predicted CH ₄ as % of		102.0%			107 19/				
	Measured		103.0%			107.1%				

							_
	Monitoring Day Designation:	Summer Day 1	Summer Day 2	Summer Day 3	Winter Day 1	Winter Day 2	Winter Day 3
	Source-1) Simple-Algorithm-Pro	edicted (CH ₄ Prod	uction w	ithin the	Modelle	ed Pl
	Modelled Gravity Sewer CH ₄ , kg CH ₄ /D	63	62	60	38	37	38
	Modelled Surcharged Sewer CH4, kg CH4/D	2.0	1.9	1.9	1.1	1.1	1.1
	Modelled CH4 Production in PI, kg CH4/D	64.9	64.3	62.2	38.7	38.4	39.4
Results showed	Modelled as % of Measured	49.7 %	49.0 %	47.0%	46.4%	55.6 %	58.9 %
	Source-2) Estimated Transport of	CH ₄ into	the PI f	rom Othe	er-Jurisd	ictional	Sewers
Good Correlation	Average Dissolved CH ₄ Feed Sewers to the	0.75	0.74	0.75	0.40	0.36	0.38
	PI, mg/L [*]						
with Townson another	Estimated CH ₄ ,Transport into the PI from	84.7	85.8	81.1	50.6	50.2	51.5
with remperature	Feed Sewers, kg CH₄/D						
·····	Iransported CH ₄ as % of Measured	64.9%	65.4%	61.3%	60.6%	72.7%	77.0%
	Sink-2) Estimated Dissolved CH ₄	Dischar	ged from	the LTO	AF-17-Ve	entilated	Reach
	Dissolved CH ₄ Concentration Leaving LTOAF-	0.111	0.110	0.109	0.085	0.083	0.084
"Backed in" to	Dissolved CH. Discharged from LTOAE-17-						
	Ventilated Section kg CH_/D	12.6	12.8	11.8	10.7	11.6	11.6
0.75ma/L	Transported CH ₄ as % of Measured	9.6%	9.8%	8.9%	12.8%	16.8%	17.3%
······································	Sink-1) Measured	d Data fo	or each D	ay of Sa	mpling		
dissolved methane	Average PI Sewage Temperature. ^o C	22.1	21.8	21.5	12.7	12.1	12.6
	Average Measured Flow at LTOAB-17, mgd	29.9	30.8	28.7	33.3	36.9	36.2
in imported	Measured CH ₄ Emissions, kg CH ₄ /D	131	131	132	83	69	67
mmponed	Total Accounted f	or CH ₄	to be Em	itted at I	TOAF-1	7	
cowago at 22 10C	Total Modelled + Estimated - Discharged	127	127	121	70	77	70
Sewaye at ZZ. 1°C	(Predicted) CH ₄ , kg CH ₄ /D	157	157	151	73		/3
Water Environment	Total Predicted CH ₄ as % of Measured	105.0%	104.6%	99.3%	94.2%	111.5%	118.6%
the water quality people"	Average Seasonal Predicted CH ₄ as % of		103.0%			107.1%	
	Measured						

Sources of **Over-Reporting:**

- Likely-Low
 Assumed CH₄
 Concentration for
 Sewage Discharged
 from Experimental
 Boundary
- 2. Higher than Current Flows in

Design-Average, Hydraulic-Model Shape File

3. Assumption that all measured flow at MH17 is Imported as Sewage

Forcemain-Method Verification

Keshab Sharma, The University of Queensland

Measured Summer Data											
Pipe No.	Pipe Length (km)	Pipe Diameter (m)	Temperature (°C)	No of pumping events/day	Average Pumping Interval (min)	Methane Production (kg/day)					
1	2.037	0.525	28	43	6.37	5.94					
2	0.088	0.225	28	19	6.76	0.08					
3	0.47	0.525	28	62	5.90	1.56					
4	0.057	0.1	28	16	3.92	0.02					
5	1.1	0.525	28	75	5.45	3.91					
6	0.007	0.15	28	21	2.07	0.00					
7	0.2	0.525	28	94	4.61	0.76					
8	1.215	0.33	28	41	2.17	1.96					
9	0.2	0.525	28	126	3.91	0.83					
10	0.537	0.15	28	43	15.44	0.57					
11	0.4	0.525	28	164	5.55	2.30					
					Total:	17.95					
Water E	nvironment ration										

Pipe No.	Pipe Length (km)	Pipe Diameter (m)	Temperature (°C)	No of pumping events/day	Average Pumping Interval (min)	Methane Production (kg/day)
1	2.037	0.525	25	43	6.37	4.98
2	0.088	0.225	25	19	6.76	0.07
3	0.47	0.525	25	62	5.90	1.31
4	0.057	0.1	25	16	3.92	0.02
5	1.1	0.525	25	75	5.45	3.28
6	0.007	0.15	25	21	2.07	0.00
7	0.2	0.525	25	94	4.61	0.64
8	1.215	0.33	25	41	2.17	1.64
9	0.2	0.525	25	126	3.91	0.70
10	0.537	0.15	25	43	15.44	0.48
11	0.4	0.525	25	164	5.55	1.93
					Total:	15.18

Comparison of Measured and Modeled CH₄ Emission Rates

Data Series	No of days of measurement	Total measured methane (kg)	Total methane predicted by the model (kg)	Difference
Summer	27	23.46	17.95	-23.49%
Winter	26	15.18	15.07	-0.73%

Asbjørn Haaning-Nielsen, Ph.D., Aalborg University

Area (ha)

99,674

150,552

Water Research

The effect of sulfide control 0 meter Untreated 0,3 • Example data: Activity of 20 substance (g VS)⁻¹ minute 0,25 0,1 20'0 20'0 Ee(II) minute⁻ Fe(III) suspended biofilm from inlet 15 and 200m inside the force substance (g VS)⁻¹ 10 mains: 5 Sulfate reduction >> methane mmol 0 0 mmo formation Methane Lactic Propionic SO4-S Acetic Formic -5 Reduced sulfate reduction and 200 meter Untreated 0,3 20 methane formation as result of Fe(II) minute⁻ 0,25 minute⁻ Fe(III) 15 sulfide precipitation 0,2 VS)⁻¹ ₁₋(S/ 6) Slightly increased reaction rates @ . 0,15 0,1 substance 0,1 stance 200 m compared to the inlet (0 m) 5 sub mmol 0 mmol s 0 Water Environment Federation Methane Acetic Formic Lactic Propionic SO₄-S -5

Impact of sulfide control

Water Environment Federation

- As shown, the addition of ferrous and ferric iron for sulfide control was found to impact the methane (and sulfide) formation rates
- Microbiome analysis showed that the distribution of microbes related to sulfide production and methane production was significantly affected as well

Summary

- The proposed model fits well with observed data from an pilot scale experimental sewer
- Sulfide control in terms of ferrous or ferric dosing lowers the methane formation significantly

Great Lakes Water Authority

Service Area Summary:

- Population: 3.5 million
- 946 mi.² • Service Area:
- Approx. Length: 585 miles
- Average Flows: 645 MGD
- Peak Flows: 1.7 BGD
- ~% Forcemains: 1%
- Min/Max Sewage Temperatures:
 - March 50 ^oF 72 ⁰F
 - August

([GLW/ Prop	A's Use osed N	e of tl Aetho	ne odolog	5y					
S	started	with outp	out Exce	el file fron	n our col	llectior	n-system mc	odel at av	erage fl	ows:
	А	В	С	D	E	F	G	Н	I	J
1 2										
3 4					Base-File	Data N	leeds			
5										
	Se	egment ID; not	t					-	Upstre Downstr	eam and eam HGLs
	(model	ecifically used	4	Shar	pe, Size, Len	gth, and s	Slope	Flow	Avg Depth	Avg Depth
	link			Pipe Shape	Diameter	Length		Static- Model	Upstream	Downstream
7			To MH	[1]	(inches) 🕞	(feet) 🖃	Slope (ft/100 ft) 🖃	Avg Flow (cfs -	(inches) -	(inches) 🕞
	name) -	From MH	101011							
8	name) - 600	From MH - 600	2985	CIRCULAR	162	500	0.000	9.12	10.2	4.1
8 9	name) - 600 605	From MH 600 605	2985 600	CIRCULAR CIRCULAR	162 138	500 900	0.000 0.089	9.12 8.04	10.2 23.3	4.1 10.2
8 9 10	name) - 600 605 620	From MH 600 605 620	2985 600 605	CIRCULAR CIRCULAR CIRCULAR	162 138 162	500 900 600	0.000 0.089 0.100	9.12 8.04 8.04	10.2 23.3 16.3	4.1 10.2 23.3
9 10 11	name) - 600 605 620 621	From MH 600 605 620 621	2985 600 605 620	CIRCULAR CIRCULAR CIRCULAR CIRCULAR	162 138 162 138	500 900 600 2696	0.000 0.089 0.100 0.060	9.12 8.04 8.04 0.00	10.2 23.3 16.3 0.0	4.1 10.2 23.3 16.3

GLWA Propc	k's U: osed	se of tl Metho	ne odolog	5 y					
Perfo	rmed	unit conve	ersions to	metric:					
	K	L	М	N	0	Р	AD	AE	
	1 2 3 4 5 6	iputs Used	in Both Gr	avity- a r	nd Surcha	arged-S	iewer Cald	culations	
	Avg Fl	ow Nengt	h in Feet	cfs to m ³ /s	5				
	(mgo [milli	n to Kil	ometers	Static-		nches an	i d Feet to Me	aters	
	UK			Model		neries un			
	gallo	ns Segment	Gravity Sewer	Average	Diameter	Slope	Avg Depth	Avg Depth	- I
	7 per da	y- Length (km	Length (km) -	Flow (m ³ /	(m) 🕞	(m/m) -	Upstream (n÷	Downstream (n÷	1
	8 4.92	5 0.152	0.152	0.2583058	4.1148	0.00000	0.258	0.104	
	9 4.34	0.274	0.274	0.2276104	3.5052	0.00089	0.591	0.258	
	10 4.34	0.183	0.183	0.2276104	4.1148	0.00100	0.414	0.591	
	11 0.00	0.822	0.822	0	3.5052	0.00060	0.000	0.414	
	12 0.00	0.657	0.657	0	3.5052	0.00035	0.000	0.000	
	13 0.00	0.208	0.208	0	2.5908	0.00050	0.000	0.000	

GLWA's Use of the Proposed Methodology

GRAVITY-SEWER CH₄ production at monthly-average temperatures:

	Gr	avity-Sev	ver, Mo	nthly-A	verage	kg-CH ₄	/D at M	lonthly	Average T	emperat	tures	
Days:	1	1	1	1	1	1	1	1	1	1	1	1
ure, deg C:	11.11	10.39	9.77	11.10	14.11	17.35	20.11	21.91	21.42	18.99	16.64	13.69
		Ca	Iculated	Outpu	ts - Gra	vity-Sev	wer Sim	ple Algo	orithm		Monthly	A
Daily CH4.	g-сн ₄ /D										Tempera	Average itures, ^o C
kg-CH4/D:	437.2	419.3	404.3	437.1	520.9	628.8	738.8	820.6	797.1	692.1	603.3	508.0
						1						
(January 🕞	February -	March	April 🖃	May 🕞	June 🕞	July 🖃	August -	September -	October -	November -	December
(January - 0.202	February - 0.193	March - 0.187	April -	May -	June - 0.290	July -	August - 0.379	September - 0.368	October - 0.319	November - 0.278	December 0.234
(January - 0.202 0.057	February - 0.193 0.055	March • 0.187 0.053	April • 0.202 0.057	May 0.240 0.068	June - 0.290 0.082	July • 0.341 0.097	August - 0.379 0.108	September - 0.368 0.104	October - 0.319 0.091	November - 0.278 0.079	December 0.234 0.067
Months	January - 0.202 0.057 0.001	February - 0.193 0.055 0.001	March - 0.187 0.053 0.001	April 0.202 0.057 0.001	May - 0.240 0.068 0.002	June - 0.290 0.082 0.002	July - 0.341 0.097 0.002	August - 0.379 0.108 0.003	September - 0.368 0.104 0.003	October - 0.319 0.091 0.002	November - 0.278 0.079 0.002	December 0.234 0.067 0.002
Months	January - 0.202 0.057 0.001 0.001	February - 0.193 0.055 0.001 0.001	March • 0.187 0.053 0.001 0.001	April - 0.202 0.057 0.001 0.001	May • 0.240 0.068 0.002 0.001	June - 0.290 0.082 0.002 0.001	July - 0.341 0.097 0.002 0.001	August - 0.379 0.108 0.003 0.001	September - 0.368 0.104 0.003 0.001	October - 0.319 0.091 0.002 0.001	November - 0.278 0.079 0.002 0.001	December 0.234 0.067 0.002 0.001
Months	January - 0.202 0.057 0.001 0.001 0.001 0.000	February 0.193 0.055 0.001 0.001 0.000	March - 0.187 0.053 0.001 0.001 0.000	April 0.202 0.057 0.001 0.001 0.000	May • 0.240 0.068 0.002 0.001 0.000	June - 0.290 0.082 0.002 0.001 0.000	July • 0.341 0.097 0.002 0.001 0.000	August - 0.379 0.108 0.003 0.001 0.000	September - 0.368 0.104 0.003 0.001 0.000	October - 0.319 0.091 0.002 0.001 0.000	November - 0.278 0.079 0.002 0.001 0.000	December 0.234 0.067 0.002 0.001 0.000
Months	January - 0.202 0.057 0.001 0.001 0.000 0.000	February - 0.193 0.055 0.001 0.001 0.000 0.000	March - 0.187 0.053 0.001 0.001 0.000 0.000	April - 0.202 0.057 0.001 0.001 0.000 0.000	May • 0.240 0.068 0.002 0.001 0.000 0.000	June - 0.290 0.082 0.002 0.001 0.000 0.000	July - 0.341 0.097 0.002 0.001 0.000 0.000	August - 0.379 0.108 0.003 0.001 0.000 0.000	September - 0.368 0.104 0.003 0.001 0.000 0.000	October - 0.319 0.091 0.002 0.001 0.000 0.000	November - 0.278 0.079 0.002 0.001 0.000 0.000	December 0.234 0.067 0.002 0.001 0.000 0.000
Months	January - 0.202 0.057 0.001 0.001 0.000 0.000 0.000 0.018	February - 0.193 0.055 0.001 0.001 0.000 0.000 0.000 0.017	March • 0.187 0.053 0.001 0.001 0.000 0.000 0.000 0.017	April 0.202 0.057 0.001 0.001 0.000 0.000 0.000 0.018	May • 0.240 0.068 0.002 0.001 0.000 0.000 0.000 0.021	June - 0.290 0.082 0.002 0.001 0.000 0.000 0.000 0.026	July - 0.341 0.097 0.002 0.001 0.000 0.000 0.000 0.030	August - 0.379 0.108 0.003 0.001 0.000 0.000 0.000 0.034	September 0.368 0.104 0.003 0.001 0.000 0.000 0.033	October - 0.319 0.091 0.002 0.001 0.000 0.000 0.000 0.029	November - 0.278 0.079 0.002 0.001 0.000 0.000 0.025	December 0.234 0.067 0.002 0.001 0.000 0.000 0.000 0.021
Months	January - 0.202 0.057 0.001 0.001 0.000 0.000 0.000 0.018 0.089	February 0.193 0.055 0.001 0.000 0.000 0.000 0.017 0.085	March 0.187 0.053 0.001 0.001 0.000 0.000 0.017 0.082	April 0.202 0.057 0.001 0.000 0.000 0.000 0.018 0.089	May 0.240 0.068 0.002 0.001 0.000 0.000 0.021 0.106	June - 0.290 0.082 0.002 0.001 0.000 0.000 0.000 0.026 0.128	July • 0.341 0.097 0.002 0.001 0.000 0.000 0.030 0.150	August 0.379 0.108 0.003 0.001 0.000 0.000 0.034 0.167	September - 0.368 0.104 0.003 0.001 0.000 0.000 0.033 0.162	October 0.319 0.091 0.002 0.001 0.000 0.000 0.029 0.141	November - 0.278 0.079 0.002 0.001 0.000 0.000 0.025 0.123	December 0.234 0.067 0.002 0.001 0.000 0.000 0.021 0.103

	's lise of the	3 4		Gravity-Se	wer Equat	ion Use	
		5	Model	Input Avg. Da	aily Temperat	ture, deg C:	11.11
Propo	sed Methodology	6					$\overline{}$
Specific U	se of GRAVITY SEWER					Daily CH4,	
LQUATION		7				kg-CH4/D:	437.2
				Model			
r _{CH4-G}	s=		Gravity Sewer	Average	Diameter	Slope	
1 *0 /10*1	OC(I-20) + C = 0 + 135 + D + 28 + 00 + 26	8	Length (km) -	Flow (m³/	(m) -	(m/m) -	January 🗸
L~0.419~1	.06(120)×3 0120 × D0120 × Q0120	38	0.410	0.0886599	2.7432	0.00049	ormulas!\$C\$5
		39	0.116	0.0886599	2.7432	0.00045	0.057
Гондов	= CH_4 in kg- CH_4 /day	41	0.010	0.0164804	0.59436	0.00994	0.001
сп 4- GS		43	0.003	0.1695044	0.4572	0.01000	0.001
L	= Length in km	410	0.000	0.5116846	1.292352	0.00208	0.000
т	= Temperature in ⁰ C	690	0.000	0.0138554	0.109728	0.01300	0.000
		691	0.173	0.0043296	1.2192	0.02699	0.018
S	= Slope in m/m	692	0.150	0.3440491	1.524	0.00041	0.089
	= Pine diameter in m	693	0.083	0.3440491	1.2192	0.00037	0.046
		694	0.098	0.3440491	1.524	0.00094	0.053
Q	= Flow in m³/s	695	0.078	0.3440491	1.2192	0.00039	0.044
		696	1.057	0.3440491	1.524	0.00110	0.564

GLWA's Use of the Proposed Methodology

SURCHARGED SEWER CH₄ production at monthly-average temperatures:

	Surc	harged-S	iewer, N	lonthly	-Averag	ge kg-C	H₄⁄ D at	t Month	ly Average	e Tempe	ratures	
Days:	1	1	1	1	1	1	1	1	1	1	1	1
ure, deg C:	11.11	10.39	9.77	11.10	14.11	17.35	20.11	21.91	21.42	18.99	16.64	13.69
- CH ₄ , k	g-CH ₄ /D	<u>Calcul</u>	ated Ou	utputs -	Forcem	nain/Su	rcharge	d-Sewe	r Simple A	gorithm	Monthly Tempera	Average atures, ^o C
kg-CH4/D:	52.0	49.9	48.1	52.0	62.0	74.9	88.0	97.7	94.9	82.4	71.8	60.5
Slope (m/m) 🖃	January 🟹	February -	March -	April 🗸	May 🔽	June 🔽	July 🕞	August -	September -	October -	November -	December
	0.000			Contraction of the second second								
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Months	0.000	0.000 0.000 0.114	0.000 0.000 0.110	0.000 0.000 0.119	0.000 0.000 0.142	0.000 0.000 0.172	0.000 0.000 0.202	0.000 0.000 0.224	0.000 0.000 0.218	0.000 0.000 0.189	0.000 0.000 0.165	0.000 0.000 0.139
Months	0.000 0.119 0.094	0.000 0.000 0.114 0.090	0.000 0.000 0.110 0.087	0.000 0.000 0.119 0.094	0.000 0.000 0.142 0.112	0.000 0.000 0.172 0.135	0.000 0.000 0.202 0.159	0.000 0.000 0.224 0.177	0.000 0.000 0.218 0.172	0.000 0.000 0.189 0.149	0.000 0.000 0.165 0.130	0.000 0.000 0.139 0.109
Months	0.000 0.119 0.094 0.491	0.000 0.000 0.114 0.090 0.471	0.000 0.000 0.110 0.087 0.454	0.000 0.000 0.119 0.094 0.490	0.000 0.000 0.142 0.112 0.584	0.000 0.000 0.172 0.135 0.706	0.000 0.000 0.202 0.159 0.829	0.000 0.000 0.224 0.177 0.921	0.000 0.000 0.218 0.172 0.894	0.000 0.000 0.189 0.149 0.777	0.000 0.000 0.165 0.130 0.677	0.000 0.000 0.139 0.109 0.570
Months	0.000 0.119 0.094 0.491 0.035	0.000 0.000 0.114 0.090 0.471 0.033	0.000 0.000 0.110 0.087 0.454 0.032	0.000 0.000 0.119 0.094 0.490 0.035	0.000 0.000 0.142 0.112 0.584 0.041	0.000 0.000 0.172 0.135 0.706 0.050	0.000 0.000 0.202 0.159 0.829 0.059	0.000 0.000 0.224 0.177 0.921 0.065	0.000 0.000 0.218 0.172 0.894 0.063	0.000 0.000 0.189 0.149 0.777 0.055	0.000 0.000 0.165 0.130 0.677 0.048	0.000 0.000 0.139 0.109 0.570 0.040
Months	0.000 0.119 0.094 0.491 0.035 0.000	0.000 0.000 0.114 0.090 0.471 0.033 0.000	0.000 0.000 0.110 0.087 0.454 0.032 0.000	0.000 0.000 0.119 0.094 0.490 0.035 0.000	0.000 0.000 0.142 0.112 0.584 0.041 0.000	0.000 0.000 0.172 0.135 0.706 0.050 0.000	0.000 0.000 0.202 0.159 0.829 0.059 0.000	0.000 0.000 0.224 0.177 0.921 0.065 0.000	0.000 0.000 0.218 0.172 0.894 0.063 0.000	0.000 0.000 0.189 0.149 0.777 0.055 0.000	0.000 0.000 0.165 0.130 0.677 0.048 0.000	0.000 0.000 0.139 0.109 0.570 0.040 0.000
Months	0.000 0.119 0.094 0.491 0.035 0.000 0.000	0.000 0.000 0.114 0.090 0.471 0.033 0.000 0.000	0.000 0.000 0.110 0.087 0.454 0.032 0.000 0.000	0.000 0.000 0.119 0.094 0.490 0.035 0.000 0.000	0.000 0.000 0.142 0.112 0.584 0.041 0.000 0.000	0.000 0.000 0.172 0.135 0.706 0.050 0.000 0.000	0.000 0.000 0.202 0.159 0.829 0.059 0.000 0.000	0.000 0.224 0.177 0.921 0.065 0.000 0.000	0.000 0.000 0.218 0.172 0.894 0.063 0.000 0.000	0.000 0.000 0.189 0.149 0.777 0.055 0.000 0.000	0.000 0.000 0.165 0.130 0.677 0.048 0.000 0.000	0.000 0.000 0.139 0.109 0.570 0.040 0.000 0.000

GL • GLW/ • 5,000	GLWA's Annual Sewer-CH ₄ Emissions • GLWA's Annual Sewer-CH4 represent 240 MT-CH ₄ /yr, or • 5,000 (@ GWP-21) or 6,700 (@GWP-28) MT-CO ₂ e/yr														
Emissions- Estimation Table VI - CU ₂ e/ VI															
Element	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	CH ₄ /yr	MT-CO ₂ e/yr	MT-CO ₂ e/yr
Days	31	28	31	30	31	30	31	31	30	31	30	31	365	<u>699</u>	1,370
Average Temperature	11 1	10.4	9.8	11 1	14 1	173	20.1	21.9	21.4	19.0	16.6	13.7	15.6	15.8	15.9
Degrees C	11.1	10.4	5.0	11.1	14.1	17.5	20.1	21.5	21.4	15.0	10.0	15.7	15.0	15.0	13.5
Gravity-Sewer															
CH ₄ , kg- CH ₄ /D	440	422	407	440	524	632	743	825	802	696	607	511	215	4,509	6,012
Surcharged-															
Sewer CH ₄ ,	52	50	48	52	62	75	88	98	95	82	72	60	25	534	712
kg CH₄/D															
Monthly															
lotals, MT-CH₄/mo:	15.2	13.2	14.1	14.7	18.2	21.2	25.8	28.6	26.9	24.1	20.4	17.7		5,043	6,724

Water Research

Kudos

Kim Siemens Water resources engineer with CDM Smith Arthur Chan Environmental Engineer with CDM Smith Jenny Casler IT Project Manager for GLWA

Water Research

Conclusions –

- Sewer Methane is significant and knowledge provides opportunities
- This Method and the supporting data have been peer-reviewed and provide a much closer estimate than currently-employed "no-emissions assumptions"

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header>

