

How to Participate Today

Audio Modes

- Listen using Mic & Speakers
- Or, select "Use Telephone" and dial the conference (please remember long distance phone charges apply).
- Submit your questions using the Questions pane.
- A recording will be available for replay shortly after this webcast.

2	Webcast Ager	nda
Time	Торіс	Speakers
1:00-2:00	Operational View of Phosphorus Removal	Sidney Innerebner James Barnard
2:00-2:30	Rock Creek AWWTF - Case Study	Chris Maher
2:30-3:00	F. Wayne Hill Water Resource Campus - Case Study	Joe Rohrbacher

Phosphorus Concentrations Decrease with Treatment

Location	Typical P, mg/L
Raw Sewage	4 – 12
Primary Effluent	2.5 – 8
Secondary Effluent w/o Bio-P	2 – 5
Secondary Effluent with Bio-P	0.7 – 1.0
Tertiary Filter Effluent	0.03 – 0.05
Wasting 1.5 – 2% P sludge re 30% in a non-BioP WRRF	educes P by 10 to
	Water Environr

Chemicals used for phosphorus precipitation

Chemical	Formula	Removal mechanism	Effect on pH	
Aluminum Sulfate (Alum)	Al ₂ (SO4) ₃ .14.3(H ₂ O) M.W. = 599.4	Metal hydroxides	removes alkalinity	
Ferric Chloride	FeCl ₃ M.W. = 162.3	Metal hydroxides	removes alkalinity	
Poly Aluminum Chloride	Al _n Cl _(3n-m) (OH) _m Al ₁₂ Cl ₁₂ (OH) ₂₄	Metal hydroxides	none	
Ferrous sulfate (pickle liquor)	Fe ₂ SO ₄	Metal hydroxides	Removes alkalinity	
Lime	CaO, Ca(OH) ₂	Insoluble precipitate	Raises pH to above 10	
0 20 Water Environment Te veter autor poper				

Effect on Sludge Productio	n
----------------------------	---

Treatment Location	Increase in Sludge Production		
	Process	Total	
Metal salts to primary clarifier	50 - 100%	60 - 70%	
Metal salts to secondary treatment to achieve effluent P in the range of 0.5 – 1.0 mg/L	35 to 45%	5 – 25%	
Tertiary application of metal salts to achieve effluent P less than 0.1 mg/L	45 to 60%	10 to 40%	
Lime precipitation produces because of lime's reaction v	greater volu with natural al	mes of sludge kalinity.	
		Water Environme Federation	

Slide 58

PJD1 Check with Nick/April? Patrick J Dunlap, 7/4/2016

31

- Perhaps they cultivate for Accumulibacter species that need acetic & propionic acid?
 - Short anaerobic residence time
 - Relatively weak anaerobic conditions (ORP > -150 mV)
 - due to high nitrate and DO concentrations
- Too much primary effluent low in VFA and high in DO going to AN zone, thus reducing AN SRT

Water Environ

- Only a portion of the RAS or mixed liquor was used
- Primary effluent went to anoxic zone
- Using only 10% to 20% of RAS reduces the nitrate load on the anaerobic zone to that same percentages
- Low mixing energy resulted in less oxygen entrainment
- Longer and deeper anaerobic zones
- Plug-flow conditions allow more anaerobic conditions further down the tank.
- Presence of *Tetrasphaera* which can ferment higher carbon

Water Environ Federation

65

Lessons learned for optimizing conventional plants

11

- With minimum temperature above 20°C conventional EBPR may still perform well, but there may be a benefit in reducing mixing energy
- With lower temperatures and poor performance
 - Reduce mixing energy
 - Partition anaerobic zones if possible
 - By-pass storm flows if possible
 - Pump mixed liquor from anaerobic zone to unused basin for fermentation and back again

Water Environ

3 pairs of A-basins, all A2O, not all equal

Basin performance differs								
	Operating Modes	Anaerobic Volume			Average 2011 Effluent OP, mg/L			
AB 1-2	AO, A2O	14%	14%	72%	0.60			
AB 4-5	AO, A2O	10%	10%	80%	0.62			
AB 6-7	AO, A2O, Step Feed, Johannesburg	11%	10%	79%	0.33			
					Water Environme Federation the water quality people	ent		

What do you put in your anaerobic zone?

- Influent, Primary Effluent?
 - What's in your influent? DO or NO₃?
- RAS
 - What's in your RAS? PAOs, Denitrifiers, NO₃, COD, VFA?

Water Environ

- VFA?
 - What's in your VFA? VFA, P, Fermenters?

52

Treated Effluent Discharged to Indirect Potable Reuse

- BNR activated sludge
- Tertiary clarification
- Tertiary UF membrane filtration
- O₃/BAC/O₃

Lake Lanier

Water Environn Federation

<section-header><text>

Nutrient Recovery Facility was put Online in Summer 2015

Alum	Dose has Decreased 64%	
since	Nutrient Recovery Online	

	2011	2012	2013	2014	2015	2016
Inf. TP, mg/L	8.3	9.7	9.4	8.8	9.2	9.1
PCE TP, mg/L	7.7	9.4	6.3	7.0	6.1	6.5
SCE TP, mg/L	0.22	0.23	0.21	0.23	0.39	0.72
TCE TP, mg/L	0.16	0.14	0.13	0.15	0.12	0.17
Final Eff. TP, mg/L	0.04	0.05	0.05	0.04	0.03	0.05
Alum Dose, mg/L	26	41	41	27	12	13

Alum Dose has been reduced from 32 mg/L to 12 mg/L average since nutrient removal online

- Operator training reduces operational costs, improves performance
- Transition chemical feed to tertiary processes to optimize biological P and nutrient recovery
- Careful control of chemical feed needed to optimize nutrient recovery

Water Environn Federation

