

The Future of Sewers - Get Smart! Control and Optimization Strategies for the 21st Century – Part II

Thursday, December 3, 2020 1:00 – 2:30 PM ET

Water Environr

Today's Presenters

• Jefferson County System-Wide Optimization

- Daniel White, Joel Wilson, Sean FitzGerald
- Columbus Ohio's Waze App for Guiding Operations with Decision Intelligence
 - Holly Boyer, Dax Blake
- Get Your Mind in the Gutter: Adding Intelligence to Optimize Wastewater Management in Combined and Separate Systems
 - Erin Rothman

Introduction

Daniel White, P.E. Deputy Director of Environmental Services Jefferson County, Alabama

Joel Wilson, CpE Asia/Pacific Director WCS Engineering

David F. Garcia, Jr, P.E. President, US Operations WCS Engineering

Water Environment

Sean FitzGerald, P.E. Vice President Conveyance Practice Leader Hazen and Sawyer

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Optimization Objectives

- 1. System-wide optimization of SSO remedial measure alternatives based on lifecycle cost.
- 2. Includes a total of five basins (150 square miles / 750 miles of modeled sewer)
- 3. Evaluate conveyance, storage, inflow and infiltration (I/I) reduction, treatment and inter-basin diversion alternatives.
- 4. Apply intelligent algorithm & cloud computing optimization to evaluate alternatives.
- 5. Develop an adaptive planning strategy that addresses I/I reduction assumptions.
- 6. Prioritize implementation schedule to maximize ROI

Water Environm

Optimization Planning Criteria and Assumptions

- Eliminate SSOs and reduce surcharge to less than 2 feet freeboard.
- Design scenario future conditions (2040) and worst case of 2-year, 6-hour and 2-year, 24-hour design storm.
- New gravity sewers to be designed to satisfy either no surcharge or capacity greater than design flow.
- Force main maximum velocity of 7 fps.
- Life-cycle cost analysis

Water Environment

Unit Cost Rates	3 — pital	• Basis Cost + PV (of Cost D&M + PV Re	placement	zen 🔘	WCS ENGINEERING
Present Value V	ariabl	es		Annual O&M Costs	6	
Analysis Period (years)	n	100	Storage	Facilities	1.5%	
, that your i on our (your of)		100	Gravity &	Pressure Mains	0.3%	
Effective Discount Rate	ER	5.0%	Pump St	ations (\$/MGD)	\$4,820	
100-Yr PV Annual Cost Multiplie	r PV	19.85				
			Asset Life			
	Asset		Expected life (yr)	PV Replacement Cost over Lifespan (% capital)		
Gravity Pipes			80	2.04%		
Pressure pipes			60	5.61%		
Storage Tank			60	5.61%		
Pumps stations			35	21.98%		
					Wa	ter Environment Federation re water quality people [®]

Jnit (Cos	st Ra	ites	— E>	kamp	ole Pip		sts	H	az	zen (
Capital Costs f	for Gravity	Sewers -	– Capii	Cycle O&M	for Gravit	y Sewers -	+ PV Replace		y Sewers -		Total Projec	t Cost for	Gravity Surf Rest
Pipe Diameter (feet)	<15'	>15'	Pipe	Diameter (feet)	<15'	>15'	Pipe Diameter (feet)	<15'	>15'		Pipe Diameter (feet)	<15'	>15'
0.67	\$468	\$584		0.67	\$28	\$35	0.67	\$4	\$4		0.67	\$499	\$624
0.83	\$488	\$610		0.83	\$29	\$36	0.83	\$4	\$5		0.83	\$520	\$650
1.00	\$512	\$640		1.00	\$30	\$38	1.00	\$4	\$5		1.00	\$546	\$682
1.05	¢EEE	\$603		1.25	\$33	\$41	1.25	\$4	\$5		1.25	\$592	\$740
1.20	4000	\$093		1.50	\$36	\$45	1.50	\$5	\$6		1.50	\$647	\$808
1.50	\$606	\$758		1.75	\$40	\$50	1.75	\$5	\$6		1.75	\$710	\$887
1.75	\$665	\$831		2.00	\$44	\$54	2.00	\$6	\$7		2.00	\$780	\$976
2.00	\$731	\$914		2.25	\$48	\$60	2.25	\$6	\$8		2.25	\$859	\$1,073
2.25	\$805	\$1,006		2.50	\$53	\$66	2.50	\$7	\$8		2.50	\$943	\$1,179
2.50	\$884	\$1,105	+	3.00	\$63	\$79	+ 3.00	\$8	\$10	=	3.00	\$1,132	\$1,415
3.00	\$1,061	\$1,326		3.50	\$75	\$94	3.50	\$10	\$12		3.50	\$1,342	\$1,677
3.50	\$1,258	\$1,572		4.00	\$88	\$110	4.00	\$11	\$14		4.00	\$1,570	\$1,963
4.00	\$1,471	\$1,839		4.50	\$101	\$126	4.50	\$13	\$16		4.50	\$1,812	\$2,265
4.50	\$1,698	\$2,123		5.00	\$115	\$144	5.00	\$15	\$18		5.00	\$2,065	\$2,581
5.00	\$1,935	\$2,418		5.50	\$130	\$162	5.50	\$17	\$21		5.50	\$2,324	\$2,905
5.50	\$2,178	\$2,722		6.00	\$144	\$180	6.00	\$18	\$23		6.00	\$2,586	\$3,232
6.50	92,423 \$2,669	\$3,029		6.50	\$159	\$199	6.50	\$20	\$25		6.50	\$2,847	\$3,559
7.00	¢2,008	\$3,335 \$3,635		7.00	\$173	\$216	7.00	\$22	\$28		7.00	\$3,103	\$3.879
7.00	\$2,900 \$3,140	\$3,035		7.50	\$187	\$234	7.50	\$24	\$30		7.50	\$3.351	\$4,189
8.00	\$3,140	\$4,201		8.00	\$200	\$250	8.00	\$26	\$32		8.00	\$3.587	\$4,484
8.67	\$3,632	\$4,201	_	8.67	\$216	\$270	8.67	\$28	\$35		8.67	\$3,875	\$4,844
0.07	ψ0,002	ψ-,040		0.01	ψ210	ψ210	0.07	ψ20	ψ33		0.07	ψ0,010	ψ4,044

Example of	f I/I R	educt	tion O	ption	s														
Consolidated Flow Meter	Average P	Max I/I Red.	Max VI Red.	Average	\$/I F		Av. Remain.	Discount	Total FMC	I/I Opt.	M Opt. 1	1 M Ont	// Ont 2 Cost	I/I Ont_3	III Opt 3 Cost	M Ont-4	I/I Opt 4 Cost	I/I Ont-6	III Ont 5 Cost
Catchment (FMC) ID	Average K	Aggressive	Conserv. V2	Diameter (")	ə/LF	Av. Age	Life (yrs)	\$/LF	Length (LF)	1	Cost	in Opt	in Opt. 2 Cost	и орг. а	in Opt. 3 Cost	M Opt. 4	in Opt. 4 Cost	in Opt. a	in Opt. 5 Cost
BN_CAHABA-C1X1	22%	50%	30%	12	99	38	42	\$ 93	848,756	0%	\$ -	10%	\$ 15,786,862	20%	\$ 31,573,723	30%	\$ 47,360,585		
BN_CAHABA-C7	2%			10	97	30	50	\$ 93	52,663										
BN_CAHABA-CSTP1A	1%			9	96	20	60	\$ 93	28,986										
BN_CAHABA-CSTP1B	10%	30%	30%	9	96	24	56	\$ 93	14,885	0%	\$ -	10%	\$ 461,435	20%	\$ 922,870	30%	\$ 1,384,305		
BN_FIVEMILE-9D-Phase1	31%	60%	40%	8	95	38	42	\$ 89	223,094	0%	\$ -	10%	\$ 3,309,228	20%	\$ 6,618,455	30%	\$ 9,927,683	40%	\$ 13,236,911
BN_FIVEMILE-F01D	14%	40%	30%	14	129	32	48	\$ 123	61,387	0%	\$ -	10%	\$ 1,887,650	20%	\$ 3,775,301	30%	\$ 5,662,951		
BN_FIVEMILE-F01E	43%	60%	40%	9	96	38	42	\$ 90	41,119	0%	\$ -	10%	\$ 616,785	20%	\$ 1,233,570	30%	\$ 1,850,355	40%	\$ 2,467,140
BN_FIVEMILE-F02A	38%	60%	40%	9	96	42	38	\$ 88	51,439	0%	\$ -	10%	\$ 754,439	20%	\$ 1,508,877	30%	\$ 2,263,316	40%	\$ 3,017,755
BN_FIVEMILE-F02B	10%	40%	30%	11	99	41	39	\$ 91	68,596	0%	\$ -	10%	\$ 1,560,559	20%	\$ 3,121,118	30%	\$ 4,681,677		
BN_FIVEMILE-F07X1E	15%	40%	30%	8	95	58	22	\$ 79	29,285	0%	\$ -	10%	\$ 578,379	20%	\$ 1,156,758	30%	\$ 1,735,136		
BN_FIVEMILE-F08A	53%	60%	40%	8	95	54	26	\$ 82	43,484	0%	\$ -	10%	\$ 594,281	20%	\$ 1,188,563	30%	\$ 1,782,844	40%	\$ 2,377,125
BN_FIVEMILE-F09B1	24%	60%	40%	10	97	54	26	\$ 83	61,273	0%	\$ -	10%	\$ 847,610	20%	\$ 1,695,220	30%	\$ 2,542,830	40%	\$ 3,390,439
BN_FIVEMILE-F09C	20%	50%	30%	8	95	59	21	\$ 78	20,660	0%	\$ -	10%	\$ 322,296	20%	\$ 644,592	30%	\$ 966,888		
BN_FIVEMILE-F09E	68%	60%	40%	8	95	61	19	\$ 76	108,115	0%	\$ -	10%	\$ 1,369,457	20%	\$ 2,738,913	30%	\$ 4,108,370	40%	\$ 5,477,827
BN_FIVEMILE-F09I	17%	50%	30%	9	96	53	27	\$ 83	18,032	0%	\$ -	10%	\$ 299,331	20%	\$ 598,662	30%	\$ 897,994		
BN_FIVEMILE-F09J	19%	50%	30%	9	96	47	33	\$ 86	63,467	0%	\$ -	10%	\$ 1,091,632	20%	\$ 2,183,265	30%	\$ 3,274,897		
BN_FiveMile-F09L	27%	60%	40%	9	96	50	30	\$ 85	48,040	0%	\$ -	10%	\$ 680,567	20%	\$ 1,361,133	30%	\$ 2,041,700	40%	\$ 2,722,267
BN_FIVEMILE-F09N	20%	50%	30%	8	95	52	28	\$ 83	33,421	0%	\$ -	10%	\$ 554,789	20%	\$ 1,109,577	30%	\$ 1,664,366		
BN_FIVEMILE-F09O	19%	50%	30%	9	96	41	39	\$ 89	87,251	0%	\$ -	10%	\$ 1,553,068	20%	\$ 3,106,136	30%	\$ 4,659,203		
BN_FIVEMILE-F1	27%	60%	40%	14	129	32	48	\$ 123	175,616	0%	\$ -	10%	\$ 3,600,128	20%	\$ 7,200,256	30%	\$ 10,800,384	40%	\$ 14,400,512
BN_FIVEMILE-F3X2B	28%	60%	40%	8	95	69	11	\$ 67	36,197	0%	\$ -	10%	\$ 404,200	20%	\$ 808,400	30%	\$ 1,212,600	40%	\$ 1,616,799
BN_FIVEMILE-F3X2C	153%	60%	40%	10	97	73	10	\$ 67	21,438	0%	\$ -	10%	\$ 239,391	20%	\$ 478,782	30%	\$ 718,173	40%	\$ 957,564
BN_FIVEMILE-F3X2D	52%	60%	40%	10	97	73	10	\$ 67	38,075	0%	\$ -	10%	\$ 425,171	20%	\$ 850,342	30%	\$ 1,275,513	40%	\$ 1,700,683
BN_FIVEMILE-F3X2D1	45%	60%	40%	9	96	73	10	\$ 67	22,638	0%	\$ -	10%	\$ 252,791	20%	\$ 505,582	30%	\$ 758,373	40%	\$ 1,011,164
BN FIVEMILE-F3X2D3	54%	60%	40%	10	97	85	10	\$ 67	35,981	0%	\$ -	10%	\$ 401,788	20%	\$ 803,576	30%	\$ 1,205,364	40%	\$ 1,607,151
BN FiveMile-F3X2F1n	31%	60%	40%	8	95	60	20	\$ 77	31.698	0%	s -	10%	\$ 406,791	20%	\$ 813.582	30%	\$ 1.220.373	40%	\$ 1.627.164
BN PATTON-PA1X1	32%	60%	40%	10	97	39	41	\$ 90	104.096	0%	s -	10%	\$ 1,561,440	20%	\$ 3,122,880	30%	\$ 4.684.320	40%	\$ 6,245,760
BN PATTON-PA1X1C	24%	60%	40%	10	97	28	52	\$ 93	80,512	0%	s -	10%	\$ 1,247,936	20%	\$ 2,495,872	30%	\$ 3,743,808	40%	\$ 4,991,744
BN PATTON-PA1X2	31%	60%	40%	10	97	46	34	\$ 88	724.876	0%	s -	10%	\$ 10.631.515	20%	\$ 21,263,029	30%	\$ 31.894.544	40%	\$ 42,526,059
BN SHADES-OX1	10%	30%	30%	8	95	32	48	\$ 90	88,748	0%	s -	10%	\$ 2,662,440	20%	\$ 5.324.880	30%	\$ 7,987,320		
BN SHADES-RICE	11%	40%	30%	9	96	31	49	\$ 92	159 136	0%	s -	10%	\$ 3,660,128	20%	\$ 7,320,256	30%	\$ 10 980 384		
BN_SHADES-S12A	14%	40%	30%	9	96	54	26	\$ 83	47 908	0%	s -	10%	\$ 994 091	20%	\$ 1,988,182	30%	\$ 2,982,273		
BN SHADES-S12B	15%	50%	30%	9	96	54	26	\$ 83	55,984	0%	s -	10%	\$ 929.334	20%	\$ 1.858.669	30%	\$ 2,788,003		
BN SHADES-S12C	18%	50%	30%	9	96	56	24	\$ 81	96,192	0%	s -	10%	\$ 1,558,310	20%	\$ 3,116,621	30%	\$ 4,674,931		
BN SHADES-S13A	41%	60%	40%	9	96	46	34	\$ 87	61,734	0%	s -	10%	\$ 895,143	20%	\$ 1,790,286	30%	\$ 2.685.429	40%	\$ 3,580,572
BN SHADES-S16A	30%	60%	40%	10	97	58	22	\$ 81	92 232	0%	s -	10%	\$ 1245 132	20%	\$ 2,490,264	30%	\$ 3735396	40%	\$ 4 980 528
BN_SHADES-S16B	16%	50%	30%	9	96	48	32	\$ 86	58 188	0%	s -	10%	\$ 1,000,834	20%	\$ 2,001,667	30%	\$ 3,002,501	. 5 / 0	\$ 1,500,020
BN_SHADES-S1A	9%	30%	30%	17	157	40	40	\$ 146	200,669	0%	\$ -	10%	\$ 9,765,891	20%	\$ 19,531,783	30%	\$ 29,297,674		

Key Points

- Optimized storage and I/I reduction eliminates extensive conveyance upgrades.
- Conveyance improvements sized conservatively based on I/I reduction sensitivity.
- Conservative I/I reduction scenario provides flexibility for an adaptive planning strategy.
- Savings on the order of 20% to 30% compared to RMP developed using traditional modeling and without considering I/I reduction

Water Environment

Prioritization

- Select projects from the optimized RMP (aggressive I/I scenario with conservative pipe sizing) to develop a schedule of implementation that maximizes ROI.
- ROI is defined as maximum reduction in total 2-year 6h and 24h design storm SSO volume/count at least cost.
- Reduction of SSOs at confirmed SSO locations weighted higher than reduction of unconfirmed modeled SSOs.

Summary

- On the order of 20% to 30% cost savings relative to trial-anderror modeling without considering I/I alternatives.
- Prioritized investment schedule achieving approximately 80% reduction in SSOs within 40% of total capital expenditure.
- Conveyance improvements sized conservatively based on I/I reduction sensitivity analysis results.
- Conservative I/I reduction scenario provides flexibility for an adaptive planning strategy.

Water Environment

Water Environment

Incorporating Optimization Results into the CIP

- Optimization results will be reviewed and prioritized
- Projects with highest return on investment will be done first
- I/I reduction is focus of early implementation as part of adaptive management approach
- Approach has enabled County to better focus and plan spending of limited dollars to address multiple needs

Columbus Ohio's Waze App for Guiding Operations with Decision Intelligence

Looking into the Future: Columbus, Ohio's Real Time Decision Support System

X System Application X +			- σ ×
← → C ① i apps.emnet.net/sandbox/columbusfrontend/#/ove	rview/prediction-dashboard		Q 🖈 🛄 Q 📕 🛇 🔺 💩 🇯 🗿 🗄
Columbus Dradictive Dech	he out		System Overviev
Columbus Predictive Dash	board	« 2020-03-15 19:00 » 60 MEAL 640A	O Mode: FESTORS
Forecasted		Forecasted SWW	IP Treatment Kate
			3/18/2020
			7.00 DM
	an E		1:00 PIVI
12 11			and a second sec
	and the second		10
100 100 100 100 100 100 100 100 1	a in the set of the set of the		
CURRENT ODS LEVEL	ODS FILL RATE	3-HR CUMULATIVE RAINFALL	CURRENT SWWTP TREATMENT RATE
545.35 FT	5.32 PTAIR	0.60 N	\sim
CURRENT CEPT TREATMENT RATE			175.64
	CEPTACTIVAL		
			CEPT CLARIFIER LEVELS
			679.09 FT
			CLARIFIER 2 LEVEL
	CEPT OPERA	FIONAL MODE	679.86 FT
1			
«Back Home System Constraints Tabular Dashboard Prediction Dashboard	rd UC Predictions OSISIOARS Profile		 one sense of strong the of the

X System Application X +			- 6 ×
← → C ① ■ apps.emnet.net/sandbox/columbustrontend/#/ove	rview/prediction-dashboard		
Columbus Predictive Dash	board	# 2020.01.20 14:00 P 00 REAL 047A	ayadan George
Columbus Fredictive Dash		Forecasted SW	WTP Treatment Rate
			3/20/2020 2:00 PM
CURRENT ODS LEVEL			CURRENT SWWTP TREATMENT RATE
			CEPT CLARIFIER LEVELS CLARIFIER 1 LEVEL 697.32 FT
(109.82) Mod	CEPT OPERA CEPT	TIONAL MODE	CLARIFIER 2 LEVEL 697.31 FT
eBack Home System Constraints Tabular Dashboard Prediction Dashboard	ard UC Predictions OSIS/OARS Profile		

UNLIMITED APPLICATIONS—WITH THREE KEY USE CASES

	.	201	
	Use Case	ROI	Years to Recover Costs
	Urban Flooding	4.0 to 6.6	0.2
	Combined Sewer Overflows	4.8 to 5.7	0.4
Quantifying the moact of data	Sanitary Sewer Overflows	9.0 to 12.3	0.1
r cities' bottom	Sea Level Rise	12.6	0.1
lines	Operations & Maintenance	4.0	0.7

FLOOD RISK FACTORS

Elevation. Historically, the higher the elevation, the lower the risk of flooding. With heavier and more frequent storms, however, this is changing, and elevation is just one component of flood risk.

Mapped flood zones. Areas located within flood zones and that have >0.2% chance of flooding in a given year are generally higher risk than areas located at high elevations. However, many of our flood maps are outdated, so they only tell part of the story.

Land use/land cover (LULC). Although weather and climate are the main drivers of flooding, changes in land cover can also influence the occurrence and frequency of floods by changing the responsiveness of river flows to rainfall.

Impervious surface. Impervious/paved surfaces cause runoff to reach streams faster, and at greater quantities, dramatically enhancing the frequency and intensity of flooding in adjoining communities.

Water Environment

FLOOD RISK FACTORS

Median income. Full impacts of floods include more than property and infrastructure damage. Health, services, and jobs are impacted as well. Low-income communities are more often located in floodprone areas and less able to recover quickly.

Population. Areas with more people tend to see the greatest cost impacts of flooding, with damages to homes, businesses, and infrastructure. Mental and physical health are often secondary risks associated with flooding.

Population density. Areas with more population density tend to be more prone to flood disasters as a result of several factors, including land use changes and greater impervious surfaces.

History. Much of the wastewater and stormwater infrastructure in the U.S. is reaching the end of its useful life. Older pipes have a higher risk of blockages, I/I, and collapse, and are often prioritized for upcoming capital improvements.

Water Environment

